Infinite Dimensional Dynamical Systems and Partial Differential Equations
无限维动力系统和偏微分方程
基本信息
- 批准号:0908093
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2009
- 资助国家:美国
- 起止时间:2009-08-01 至 2013-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This award is funded under the American Recovery and Reinvestment Act of 2009 (Public Law 111-5). Professor Wayne will study the behavior of infinite dimensional dynamical systems such as the Fermi-Pasta-Ulam model, the Navier-Stokes equations and the Euler equations. He will use methods from dynamical systems theory to make qualitative and quantitative predictions about the solutions of these systems and will focus on four main areas: (i) The stability and interactions of solitary wave solutions in infinite dimensional dispersive Hamiltonian systems, and the geometry of the phase space of such systems; (ii) The derivation and justification of approximate equations for the evolution of wave packets on a fluid surface and the relation of such results to normal form theorems for Hamiltonian systems in which the linear part has continuous spectrum; (iii) Metastable behavior in the nearly inviscid Navier-Stokes equations and other weakly dissipative systems; and (iv) The use of invariant manifold theorems to analyze singularly perturbed partial differential equations. The geometrical properties of objects like invariant manifolds have been a great aid in illuminating the behavior of finite dimensional dynamical systems and this project will develop similar methods and insights into the behavior of infinite dimensional systems, particularly those defined on unbounded spatial regions where the linear problem has continuous spectrum.The differential equations that Professor Wayne will study arise in a variety of different physical circumstances and are characterized by the fact that while the equations themselves are well known they are too complicated to solve except in special and/or unrealistic cases. Nonetheless, applications require at least a qualitative understanding of the behavior of their solutions and this project will develop such an understanding for the equations enumerated above. As an example related to point (i) in the preceding paragraph, the equations that describe waves on the ocean, which are of importance both for understanding climate and weather and for predicting events such as tsunamis, have a family of solutions known as ``solitary waves'' which represent a single wave traveling across theocean. In practice, however, many waves are inevitably present and it becomes necessary to understand how these waves interact with each other. This project will study the types of interactions that can occur in such systems and their consequences. The remaining three sections of the research project will aim, in a similar fashion, to extend the understanding of special or limiting cases of equations of physical importance to more realistic conditions.
该奖项是根据2009年美国复苏和再投资法案(公法111-5)资助的。韦恩教授将研究无限维动力系统的行为,如费米-帕斯塔-乌拉姆模型,纳维尔-斯托克斯方程和欧拉方程。 他将使用动力系统理论的方法对这些系统的解进行定性和定量预测,并将集中在四个主要领域:(i)无限维色散Hamilton系统中孤立波解的稳定性和相互作用,以及此类系统相空间的几何形状;(二)本文推导并证明了流体表面上波包演化的近似方程,以及这些结果与线性部分连续的Hamilton系统的规范形定理的关系光谱;(iii)近无粘性Navier-Stokes方程和其他弱耗散系统的亚稳行为;(iv)利用不变流形定理分析奇摄动偏微分方程。 像不变流形这样的物体的几何特性在阐明有限维动力系统的行为方面有很大的帮助,这个项目将开发类似的方法和对无限维系统行为的见解,特别是那些定义在无界空间区域的线性问题有连续的频谱。微分方程,教授韦恩将研究出现在各种不同的物理这些方程在特定的情况下是不可避免的,其特征在于,虽然方程本身是众所周知的,但它们太复杂而无法求解,除非在特殊和/或不现实的情况下。 尽管如此,应用程序至少需要对它们的解决方案的行为有一个定性的理解,这个项目将对上面列举的方程有这样的理解。作为一个与前一段中的(i)点相关的例子,描述海洋上的波浪的方程,对于理解气候和天气以及预测海啸等事件都很重要,有一系列被称为“孤立波”的解,它们代表了一个穿越海洋的单一波浪。 然而,在实践中,许多波不可避免地存在,并且有必要了解这些波如何相互作用。 该项目将研究在这种系统中可能发生的相互作用的类型及其后果。 研究项目的其余三个部分将以类似的方式将对物理重要性方程的特殊或极限情况的理解扩展到更现实的条件。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Clarence Wayne其他文献
Clarence Wayne的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Clarence Wayne', 18)}}的其他基金
Dynamical Systems Methods for Fluid Mechanics and Hamiltonian Mechanics
流体力学和哈密顿力学的动力系统方法
- 批准号:
1813384 - 财政年份:2018
- 资助金额:
-- - 项目类别:
Standard Grant
Dynamical Systems Methods for Partial Differential Equations
偏微分方程的动力系统方法
- 批准号:
1311553 - 财政年份:2013
- 资助金额:
-- - 项目类别:
Continuing Grant
Special meeting: Dynamical systems and evolution equations, CRM
特别会议:动力系统和演化方程,CRM
- 批准号:
0803140 - 财政年份:2008
- 资助金额:
-- - 项目类别:
Standard Grant
Workshop on Mathematical Hydrodynamics at the Steklov Institute; Moscow, Russia; June 12-17, 2006
斯特克洛夫研究所数学流体动力学研讨会;
- 批准号:
0543432 - 财政年份:2005
- 资助金额:
-- - 项目类别:
Standard Grant
Dynamical Systems Approaches to Partial Differential Equations
偏微分方程的动力系统方法
- 批准号:
0103915 - 财政年份:2001
- 资助金额:
-- - 项目类别:
Continuing grant
Dynamical Systems with Infinitely Many Degrees of Freedom in Mathematical Physics
数学物理中具有无限多个自由度的动力系统
- 批准号:
9896208 - 财政年份:1997
- 资助金额:
-- - 项目类别:
Continuing Grant
Dynamical Systems with Infinitely Many Degrees of Freedom in Mathematical Physics
数学物理中具有无限多个自由度的动力系统
- 批准号:
9501226 - 财政年份:1995
- 资助金额:
-- - 项目类别:
Continuing Grant
Mathematical Sciences: Dynamical Systems with Infinitely Many Degrees of Freedom in Mathematical Physics
数学科学:数学物理中具有无限多个自由度的动力系统
- 批准号:
9203359 - 财政年份:1992
- 资助金额:
-- - 项目类别:
Continuing Grant
Mathematical Sciences: Dynamical Systems with Infinitely Many Degrees of Freedom in Mathematical Physics
数学科学:数学物理中具有无限多个自由度的动力系统
- 批准号:
9002059 - 财政年份:1990
- 资助金额:
-- - 项目类别:
Standard Grant
Mathematical Sciences: Ordered and Chaotic Motions in Hamiltonian Systems
数学科学:哈密顿系统中的有序运动和混沌运动
- 批准号:
8802118 - 财政年份:1988
- 资助金额:
-- - 项目类别:
Continuing Grant
相似国自然基金
Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:合作创新研究团队
相似海外基金
Ergodic properties of infinite dimensional dynamical systems
无限维动力系统的遍历性质
- 批准号:
2888861 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Studentship
Studies on rigorous integrator for infinite dimensional dynamical systems
无限维动力系统严格积分器研究
- 批准号:
22K03411 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Infinite-Dimensional Dynamical Systems - Stability and Long-Time Behavior
无限维动力系统 - 稳定性和长期行为
- 批准号:
2108285 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Standard Grant
Infinite-Dimensional Dynamical Systems - Stability and Long-Time Behavior
无限维动力系统 - 稳定性和长期行为
- 批准号:
2210867 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Standard Grant
Lie Groupoids and Infinite-Dimensional Dynamical Systems
李群群和无限维动力系统
- 批准号:
2008021 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Continuing Grant
Conference: A Broad Perspective on Finite and Infinite Dimensional Dynamical Systems'
会议:有限和无限维动力系统的广阔视角
- 批准号:
1700154 - 财政年份:2017
- 资助金额:
-- - 项目类别:
Standard Grant
Stability and Long Time Behavior for Infinite-Dimensional Dynamical Systems
无限维动力系统的稳定性和长时间行为
- 批准号:
1516245 - 财政年份:2015
- 资助金额:
-- - 项目类别:
Standard Grant
New development of theory of generalized functionals, an infinite dimensional stochastic analysis and applications to theory of quantum dynamical system
广义泛函理论新进展、无限维随机分析及其在量子动力系统理论中的应用
- 批准号:
15K04940 - 财政年份:2015
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Collaborative Research: Topics in Infinite-Dimensional and Stochastic Dynamical Systems
合作研究:无限维和随机动力系统主题
- 批准号:
1413603 - 财政年份:2014
- 资助金额:
-- - 项目类别:
Continuing Grant
Computational Intersection Theory for Infinite Dimensional Dynamical Systems
无限维动力系统的计算交集理论
- 批准号:
1461416 - 财政年份:2014
- 资助金额:
-- - 项目类别:
Standard Grant














{{item.name}}会员




