Dynamical Systems Methods for Partial Differential Equations
偏微分方程的动力系统方法
基本信息
- 批准号:1311553
- 负责人:
- 金额:$ 59.95万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2013
- 资助国家:美国
- 起止时间:2013-10-01 至 2019-03-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Abstract for DMS-1311553Professor Wayne will study how methods such as invariant manifold theory and the Kolmogorov-Arnold-Moser (KAM) theory, which were originally developed to understand finite dimensional dynamical systems, can be adapted to yield insight into the qualitative and quantitative behavior of solutions of partial differential equations. He will concentrate primarily on equations arising in physical applications such as fundamental fluid equations, e.g the Navier-Stokes equation, the equations for vortex sheets, and equations from nonlinear optics. His research will focus on four main problems: (A) Metastable behavior in two-dimensional fluids; (B) Periodic solutions of the vortex sheet equations; (C) Breathers in periodic media; and (D) Normal forms and invariant manifolds in dispersive Hamiltonian systems. Dynamical systems methods have yielded many insights into the qualitative behavior of finite dimensional systems for which no closed form solutions exist. The existence theory of many of the infinite dimensional systems to be studied is now well established and this research will attempt to derive more detailed information about the behavior of the solutions on various physically relevant time scales, as well as illuminating the origin of these time scales.The differential equations that Professor Wayne will study arise in a variety of different physical contexts and are characterized by the fact that while the equations themselves are well known, they are too complicated to solve explicitly except in very special or physically unrealistic cases. Nevertheless, applications require at least a qualitative understanding of the behavior of their solutions and this research project will aim to develop such an understanding for the systems described above. As an example related to point (C) in the preceding paragraph, consider light pulses of the types that are used in fiber optic cables currently used for telecommunications. In a homogeneous medium, such as glass, such pulses rapidly spread out or disperse. However, in periodic media, like certain crystals, such pulses may become trapped. Trapped pulses are of great current interest because of the hope that they might serve as the basis for a purely optical computational system. Professor Wayne's research will examine the conditions that the medium must satisfy in order to support these ``trapped'' pulses as well as investigating how common such media are likely to be. The other three projects will also aim to develop new fundamental insights into these important physical systems.
摘要DMS-1311553韦恩教授将研究如何方法,如不变流形理论和Kolmogorov-Arnold-Moser(KAM)理论,这最初是为了理解有限维动力系统,可以适应产生洞察力的定性和定量行为的解决方案的偏微分方程。他将主要集中在物理应用中产生的方程,如基本流体方程,例如Navier-Stokes方程,涡面方程和非线性光学方程。 他的研究将集中在四个主要问题:(A)亚稳态行为在二维流体;(B)涡面方程的周期解;(C)呼吸周期性介质;和(D)正常形式和不变流形在色散哈密顿系统。 动力系统方法已经产生了许多见解的定性行为的有限维系统,不存在封闭形式的解决方案。 许多待研究的无穷维系统的存在性理论现在已经很好地建立起来,本研究将试图获得关于各种物理相关时间尺度上的解的行为的更详细的信息,以及阐明这些时间尺度的起源。韦恩教授将研究的微分方程出现在各种不同的物理背景下,其特点是,这些方程本身是众所周知的,它们太复杂了,除非在非常特殊或物理上不现实的情况下,否则无法显式求解。 然而,应用程序需要至少有一个定性的了解他们的解决方案的行为,这个研究项目的目的是发展这样的理解上述系统。 作为与前段中的点(C)相关的示例,考虑在当前用于电信的光纤电缆中使用的类型的光脉冲。 在均匀介质中,如玻璃,这种脉冲迅速扩散或分散。 然而,在周期性介质中,如某些晶体,这种脉冲可能会被捕获。 捕获的脉冲是目前的极大兴趣,因为希望他们可能作为一个纯粹的光学计算系统的基础。韦恩教授的研究将检查介质必须满足的条件,以支持这些“被捕获”的脉冲,以及调查如何共同这种媒体可能是。 其他三个项目也将致力于为这些重要的物理系统开发新的基本见解。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Clarence Wayne其他文献
Clarence Wayne的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Clarence Wayne', 18)}}的其他基金
Dynamical Systems Methods for Fluid Mechanics and Hamiltonian Mechanics
流体力学和哈密顿力学的动力系统方法
- 批准号:
1813384 - 财政年份:2018
- 资助金额:
$ 59.95万 - 项目类别:
Standard Grant
Infinite Dimensional Dynamical Systems and Partial Differential Equations
无限维动力系统和偏微分方程
- 批准号:
0908093 - 财政年份:2009
- 资助金额:
$ 59.95万 - 项目类别:
Standard Grant
Special meeting: Dynamical systems and evolution equations, CRM
特别会议:动力系统和演化方程,CRM
- 批准号:
0803140 - 财政年份:2008
- 资助金额:
$ 59.95万 - 项目类别:
Standard Grant
Workshop on Mathematical Hydrodynamics at the Steklov Institute; Moscow, Russia; June 12-17, 2006
斯特克洛夫研究所数学流体动力学研讨会;
- 批准号:
0543432 - 财政年份:2005
- 资助金额:
$ 59.95万 - 项目类别:
Standard Grant
Dynamical Systems Approaches to Partial Differential Equations
偏微分方程的动力系统方法
- 批准号:
0103915 - 财政年份:2001
- 资助金额:
$ 59.95万 - 项目类别:
Continuing grant
Dynamical Systems with Infinitely Many Degrees of Freedom in Mathematical Physics
数学物理中具有无限多个自由度的动力系统
- 批准号:
9896208 - 财政年份:1997
- 资助金额:
$ 59.95万 - 项目类别:
Continuing Grant
Dynamical Systems with Infinitely Many Degrees of Freedom in Mathematical Physics
数学物理中具有无限多个自由度的动力系统
- 批准号:
9501226 - 财政年份:1995
- 资助金额:
$ 59.95万 - 项目类别:
Continuing Grant
Mathematical Sciences: Dynamical Systems with Infinitely Many Degrees of Freedom in Mathematical Physics
数学科学:数学物理中具有无限多个自由度的动力系统
- 批准号:
9203359 - 财政年份:1992
- 资助金额:
$ 59.95万 - 项目类别:
Continuing Grant
Mathematical Sciences: Dynamical Systems with Infinitely Many Degrees of Freedom in Mathematical Physics
数学科学:数学物理中具有无限多个自由度的动力系统
- 批准号:
9002059 - 财政年份:1990
- 资助金额:
$ 59.95万 - 项目类别:
Standard Grant
Mathematical Sciences: Ordered and Chaotic Motions in Hamiltonian Systems
数学科学:哈密顿系统中的有序运动和混沌运动
- 批准号:
8802118 - 财政年份:1988
- 资助金额:
$ 59.95万 - 项目类别:
Continuing Grant
相似国自然基金
Graphon mean field games with partial observation and application to failure detection in distributed systems
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
基于“阳化气、阴成形”理论探讨龟鹿二仙胶调控 HIF-1α/Systems Xc-通路抑制铁死亡治疗少弱精子症的作用机理
- 批准号:
- 批准年份:2024
- 资助金额:15.0 万元
- 项目类别:省市级项目
EstimatingLarge Demand Systems with MachineLearning Techniques
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国学者研究基金
Understanding complicated gravitational physics by simple two-shell systems
- 批准号:12005059
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
Simulation and certification of the ground state of many-body systems on quantum simulators
- 批准号:
- 批准年份:2020
- 资助金额:40 万元
- 项目类别:
全基因组系统作图(systems mapping)研究三种细菌种间互作遗传机制
- 批准号:31971398
- 批准年份:2019
- 资助金额:58.0 万元
- 项目类别:面上项目
The formation and evolution of planetary systems in dense star clusters
- 批准号:11043007
- 批准年份:2010
- 资助金额:10.0 万元
- 项目类别:专项基金项目
相似海外基金
Stabilization Methods for Dynamical Systems
动力系统的稳定方法
- 批准号:
2247553 - 财政年份:2023
- 资助金额:
$ 59.95万 - 项目类别:
Standard Grant
Dynamical and Computer-Assisted Methods Applied to Hamiltonian Systems
应用于哈密顿系统的动力学和计算机辅助方法
- 批准号:
2138090 - 财政年份:2021
- 资助金额:
$ 59.95万 - 项目类别:
Fellowship Award
Study of dynamical systems of random relaxed Newton methods
随机松弛牛顿法动力系统研究
- 批准号:
21K20323 - 财政年份:2021
- 资助金额:
$ 59.95万 - 项目类别:
Grant-in-Aid for Research Activity Start-up
Local dynamical response of inhomogeneous non-equilibrium soft matter systems studied by micro-imaging methods.
通过显微成像方法研究非均匀非平衡软物质系统的局部动力学响应。
- 批准号:
20H01873 - 财政年份:2020
- 资助金额:
$ 59.95万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Collaborative Research: Operator theoretic methods for identification and verification of dynamical systems
合作研究:动力系统识别和验证的算子理论方法
- 批准号:
2027999 - 财政年份:2020
- 资助金额:
$ 59.95万 - 项目类别:
Standard Grant
Applied Nonautonomous Dynamical Systems: Theory, Methods and Examples
应用非自主动力系统:理论、方法和实例
- 批准号:
EP/T018178/1 - 财政年份:2020
- 资助金额:
$ 59.95万 - 项目类别:
Research Grant
Collaborative Research: Operator theoretic methods for identification and verification of dynamical systems
合作研究:动力系统识别和验证的算子理论方法
- 批准号:
2028001 - 财政年份:2020
- 资助金额:
$ 59.95万 - 项目类别:
Standard Grant
Engineering Bifurcations in High-Dimensional Dynamical Systems Using Isostable Reduction Methods
使用等稳定约简方法在高维动力系统中设计分岔
- 批准号:
1933583 - 财政年份:2020
- 资助金额:
$ 59.95万 - 项目类别:
Standard Grant
Complementary study on dynamical systems and foliations using methods of partially ordered set and general topology
使用偏序集和一般拓扑方法对动力系统和叶状结构进行补充研究
- 批准号:
20K03583 - 财政年份:2020
- 资助金额:
$ 59.95万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Collaborative Research: Operator theoretic methods for identification and verification of dynamical systems
合作研究:动力系统识别和验证的算子理论方法
- 批准号:
2027976 - 财政年份:2020
- 资助金额:
$ 59.95万 - 项目类别:
Standard Grant