Equilibrium Selection in Entry Games: An Experimental Study

入门游戏中的均衡选择:实验研究

基本信息

  • 批准号:
    0550963
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2006
  • 资助国家:
    美国
  • 起止时间:
    2006-03-01 至 2009-02-28
  • 项目状态:
    已结题

项目摘要

This study examines equilibrium selection concepts in static and dynamic entry games using controlled laboratory experiments with paid human subjects. In an entry game, each member of a group of players makes a binary decision: "enter" or "don't enter." The payoff to entry depends on the number of players who choose to enter and on a state variable Y, while the payoff to non-entry is invariant to entry decisions by others or the state variable. The study explores behavior in entry games of complete information, where the value of the state Y is known to all players in advance of making their action choices. Such games give rise to multiple equilibria and coordination problems. A particular focus of this study is to assess the predictive power of two different equilibrium selection principles.Static entry games are used to test the theory of global games as an equilibrium selection device. This theory posits that players play games of complete information as if they were playing a related global game of incomplete information. The global game consists of the set of all games, G, with the same form as the game of interest. The strategy for playing a global game involves a threshold value for the state variable Y; players choose to enter if Y turns out to be greater than or equal to their threshold value and choose not to enter otherwise. Unlike the original game of complete information with its multiplicity of equilibria, the global game of incomplete information has a unique perfect Bayesian equilibrium. Therefore, if all players play the game of complete information as though there were a common understanding that all players will play that game as if they were playing the related global game, the coordination problem is resolved.In dynamic entry games, individuals decide not only whether to enter but also when to enter. Once entry occurs it is irreversible. The number of people who have already entered is part of the state description, and individuals can condition their decisions on that information. The dynamic entry game ends after n periods, or when every player has chosen to enter, whichever comes first. In this setting, subgame-perfection is the relevant equilibrium selection device. If the state variable, Y, does not indicate that entry is dominated, the subgame-perfect equilibrium prediction calls for all players immediately to choose to enter, thereby resolving the coordination problem. This entry threshold in the dynamic game will generically differ from the global game threshold in static versions of the same entry game.Do either of these equilibrium selection principles actually predict how groups of individuals behave in the face of strategic uncertainty created by a multiplicity of equilibria? One of the innovations of this project is that it seeks to address this question by examining the behavior of paid subjects in a controlled laboratory environment. Within-subject experimental design enables the assessment of the extent to which players in static, complete information entry games with multiple equilibria behave as though they were playing a related global game. Dynamic game treatment not only serves as a test of the subgame-perfect equilibrium notion; more importantly, it enables the assessment of whether and how the degree of coordination achieved under the dynamic structure differs from that achieved in static versions of the same game.As for broader impacts, the experimental design replicates, builds on and adds to prior experimental research on these important questions and is simple enough that other researchers should be able to replicate and extend the findings. While the design uses an entry game that characterizes some important aspects of financial markets, an understanding of how people behave in situations where there are a multiplicity of equilibria is of great importance in other areas as well, such as contract and mechanism design, the origin of standards and conventions and the possibility of self-fulfilling prophecies.
本研究探讨平衡选择的概念,在静态和动态进入游戏,控制实验室实验与支付人类受试者。 在进入博弈中,一组参与者中的每个成员都要做出一个二元决策:“进入”或“不进入”。“进入的收益取决于选择进入的玩家数量和状态变量Y,而不进入的收益不受其他人或状态变量的进入决定的影响。 该研究探讨了完全信息进入游戏中的行为,其中状态Y的值在做出行动选择之前被所有玩家所知。 这样的博弈会产生多重均衡和协调问题。 本研究的一个特别重点是评估两种不同的均衡选择原则的预测能力。静态进入游戏被用来测试作为均衡选择设备的全球游戏理论。 该理论假设,参与者在进行完全信息博弈时,就好像他们在进行一个相关的不完全信息全局博弈一样。 全局博弈由所有博弈的集合G组成,其形式与兴趣博弈相同。 玩全局博弈的策略涉及状态变量Y的阈值;如果Y大于或等于阈值,参与者选择进入,否则选择不进入。 与完全信息博弈的多重均衡不同,不完全信息博弈的全局均衡具有唯一的完美贝叶斯均衡。 因此,如果所有的参与者都像在玩一个全局博弈一样玩完全信息博弈,那么协调问题就解决了。在动态进入博弈中,个体不仅决定是否进入,而且决定何时进入。 一旦进入,它是不可逆的。 已经进入的人数是状态描述的一部分,个人可以根据这些信息做出决定。 动态进入游戏在n个周期后结束,或者当每个玩家都选择进入时,以先到者为准。在这种情况下,子博弈完美性是相关的均衡选择工具。 如果状态变量Y并不表示进入是劣势的,那么子博弈完美均衡预测要求所有参与者立即选择进入,从而解决协调问题。动态博弈中的进入门槛一般不同于静态博弈中的全局博弈门槛,这两个均衡选择原则中的任何一个,实际上预测了个体群体在面对由多重均衡所产生的战略不确定性时的行为吗? 该项目的创新之一是,它试图通过在受控实验室环境中检查付费受试者的行为来解决这个问题。 受试者内的实验设计,使玩家在静态的程度进行评估,完全信息输入游戏的多重均衡的行为,好像他们正在玩一个相关的全球游戏。 动态博弈的处理不仅可以作为子博弈完美均衡概念的检验;更重要的是,它能够评估在动态结构下实现的协调程度是否以及如何不同于同一游戏的静态版本中实现的协调程度。至于更广泛的影响,实验设计复制,建立在这些重要问题的先前实验研究的基础上,并对其进行了补充,而且足够简单,其他研究人员应该能够复制和扩展这些发现。 虽然该设计使用了一个进入游戏,它表征了金融市场的一些重要方面,但理解人们在存在多种均衡的情况下的行为在其他领域也非常重要,例如合同和机制设计,标准和惯例的起源以及自我实现的预言的可能性。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

John Duffy其他文献

Using Genetic Algorithms to Model the Evolution of Heterogeneous Beliefs
  • DOI:
    10.1023/a:1008610307810
  • 发表时间:
    1999-02-01
  • 期刊:
  • 影响因子:
    2.200
  • 作者:
    James Bullard;John Duffy
  • 通讯作者:
    John Duffy
Search, unemployment, and the Beveridge curve: Experimental evidence
搜索、失业与贝弗里奇曲线:实验证据
  • DOI:
    10.1016/j.labeco.2024.102518
  • 发表时间:
    2024-04-01
  • 期刊:
  • 影响因子:
    2.600
  • 作者:
    John Duffy;Brian C. Jenkins
  • 通讯作者:
    Brian C. Jenkins
Stop The Clot? Towards ‘Quality’ Venous Thromboembolism Prophylaxis In Thoracic Surgery
  • DOI:
    10.1016/j.ejso.2019.09.059
  • 发表时间:
    2019-11-01
  • 期刊:
  • 影响因子:
  • 作者:
    Edward Caruana;Gillian Swallow;John Duffy
  • 通讯作者:
    John Duffy
Paying to Avoid the Spotlight
花钱避免成为焦点
Equilibrium selection in static and dynamic entry games
  • DOI:
    10.1016/j.geb.2012.05.005
  • 发表时间:
    2012-09-01
  • 期刊:
  • 影响因子:
  • 作者:
    John Duffy;Jack Ochs
  • 通讯作者:
    Jack Ochs

John Duffy的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('John Duffy', 18)}}的其他基金

Selection Pressure in Strategic Environments
战略环境中的选择压力
  • 批准号:
    2214979
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Collaborative Research: Lifecycle Savings and Retirement Planning
合作研究:生命周期储蓄和退休计划
  • 批准号:
    1918571
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Collaborative Research: Experimental Evidence on Monetary Policies
合作研究:货币政策的实验证据
  • 批准号:
    1530820
  • 财政年份:
    2015
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Collaborative Research: Routine Formation in Organizations: Theory and Experimental Evidence
协作研究:组织中的常规形成:理论和实验证据
  • 批准号:
    1505541
  • 财政年份:
    2014
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Collaborative Research: Routine Formation in Organizations: Theory and Experimental Evidence
协作研究:组织中的常规形成:理论和实验证据
  • 批准号:
    1258789
  • 财政年份:
    2013
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Doctoral Dissertation Research In Economics: Compulsory versus Voluntary Voting: An Experimental Study
经济学博士论文研究:强制投票与自愿投票:一项实验研究
  • 批准号:
    1123914
  • 财政年份:
    2011
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Circles: Community and Industry Reaching into Computer, Lab & Engineering Sciences
圈子:社区和行业涉足计算机、实验室
  • 批准号:
    0920574
  • 财政年份:
    2009
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
MRI: Acquisition of Equipment to Upgrade the Pittsburgh Experimental Economics Laboratory
MRI:购置设备以升级匹兹堡实验经济学实验室
  • 批准号:
    0721901
  • 财政年份:
    2007
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Service-Learning Integrated throughout a College of Engineering (SLICE): Implementation
整个工程学院的服务学习整合(SLICE):实施
  • 批准号:
    0530632
  • 财政年份:
    2005
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Service-Learning Integrated throughout a College of Engineering (SLICE)
整个工程学院的服务学习整合 (SLICE)
  • 批准号:
    0431925
  • 财政年份:
    2004
  • 资助金额:
    --
  • 项目类别:
    Standard Grant

相似国自然基金

Intelligent Patent Analysis for Optimized Technology Stack Selection:Blockchain BusinessRegistry Case Demonstration
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    外国学者研究基金项目
连锁群选育法(Linkage Group Selection)在柔嫩艾美耳球虫表型相关基因研究中应用
  • 批准号:
    30700601
  • 批准年份:
    2007
  • 资助金额:
    17.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Evolutionarily smart vaccine strain selection for proactive vaccinology
用于主动疫苗学的进化智能疫苗株选择
  • 批准号:
    MR/Y004337/1
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Research Grant
mRNA selection for translation: beyond the canonical view
用于翻译的 mRNA 选择:超越规范观点
  • 批准号:
    BB/Y005783/1
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Research Grant
Development of Integrated Quantum Inspired Algorithms for Shapley Value based Fast and Interpretable Feature Subset Selection
基于 Shapley 值的快速且可解释的特征子集选择的集成量子启发算法的开发
  • 批准号:
    24K15089
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Leveraging Machine Learning to Examine Engineering Students Self-selection in Entrepreneurship Education Programs
利用机器学习检查工科学生在创业教育项目中的自我选择
  • 批准号:
    2321175
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
ERI: Intelligent Modeling and Parameter Selection in Distributed Optimization for Power Networks
ERI:电力网络分布式优化中的智能建模和参数选择
  • 批准号:
    2347120
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Indication selection, patient stratification, and IND preparation for STX-002: the first-in-class LRG1 inhibitor for treatment of chronic kidney disease and immunotherapy-resistant tumours.
STX-002的适应症选择、患者分层和IND准备:用于治疗慢性肾病和免疫治疗耐药肿瘤的一流LRG1抑制剂。
  • 批准号:
    10092585
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Collaborative R&D
Universal Model Selection Criteria for Scientific Machine Learning
科学机器学习的通用模型选择标准
  • 批准号:
    DE240100144
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Discovery Early Career Researcher Award
AI tools for biocatalyst route selection
用于生物催化剂路线选择的人工智能工具
  • 批准号:
    10076156
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant for R&D
Development of a food bolus formation ability evaluation system to support the selection of appropriate food forms.
开发食物团形成能力评估系统以支持选择合适的食物形式。
  • 批准号:
    23K09279
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
A novel neural pathway of preferential food selection for high carbohydrate and fat diets.
高碳水化合物和脂肪饮食的优先食物选择的新神经通路。
  • 批准号:
    23H02965
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了