Carbon Nanoparticles in Combustion: A Multiscale Perspective
燃烧中的碳纳米颗粒:多尺度视角
基本信息
- 批准号:0553764
- 负责人:
- 金额:$ 24万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2006
- 资助国家:美国
- 起止时间:2006-03-15 至 2010-02-28
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Award Abstract for Carbon Nanoparticles in Combustion: A Multiscale PerspectiveProposal Number: CTS-0553764; Principal Investigator: Violi, AngelaInstitution: University of Michigan Ann ArborParticulate emissions in the nanoparticle size range are related to two pressing environmental problems - the health impacts of fine particles and global warming. Epidemiological studies have shown a correlation between increased morbidity and increases in measured ambient particulate concentrations. The high number concentration and small size of nanoparticles lead to high rates of deposition deep in the lung. The ultrafine particles ( 0.1 micron) have been found to promote acute pulmonary response, and they impair the ability of the macrophages (the scavenger cells in lungs) to engulf and remove particles from the extracellular milieu. Therefore, nanoparticles emitted by combustion sources are a very serious health concern because of both their size and the carcinogens with which they are associated. It is therefore important to characterize the chemical and physical properties of atmospheric particles. Combustion is the main process through which man continuously injects particles into the atmosphere. More importantly, these particles are produced at the smallest sizes physically possible in the form of clusters with nanometric dimensions The key feature of this proposal is its innovative multiscale characterization of nano-particle formation in combustion environments, through the use of novel simulation methodologies at disparate (spatial/temporal) regimes. The use of atomistic models, such as Molecular Dynamics, can allow us to follow the transformations that occur during nanoparticle formation in a chemically specific way, providing information on both the chemical structure and the configuration of the nanoparticles and their agglomeration. Carbonaceous nanoparticle agglomeration is influenced by large length and time scale motions that extend to mesoscopic scales, i.e., one micrometer or more in length and one microsecond or more in time. In order to increase the time and length scales accessible in simulations and be able to simulate nanoparticle assembly, it is necessary to describe the particles on a more coarse-grained (CG) level. The primary research objective of this proposal is to study nanoparticle coagulation and assembly using an unique multi-scale coarse-graining approach. With this methodology the effective forces between whole groups of atoms in the molecular system are mapped into much simpler effective forces for coarse-grained sites on the molecules (or nanoparticles). These resulting forces are, in effect, the potential of mean forces between the coarse-grained sites (i.e., groupings of atoms). As a result, the effective phase space of the system is significantly reduced in size, as are the number of costly force calculations. The CG model will allow the simulations of the nanoparticle systems in this project to bridge upward in both length and time scale, so as to better access the properties influenced by those scales. This approach provides a connection between the various time and length scales in the nanoparticle self-assembly problem, together with an unprecedented opportunity for the understanding of the atomistic interactions underlying carbonaceous nanoparticle structures and growth. The integrated multi-scale simulation approach provides a detailed, molecular level description of the structure of fine particles, which are generated during the combustion of hydrocarbons. With the results obtained using this novel approach, it will be possible to significantly broaden this research into important directions, such as the influence of these particles on human health and global warming. The integration of experimental studies and theoretical simulations, in multi-level time and particle size scales, will increase the overall understanding of nanoparticle formation and transformation. This is an important aspect of the intellectual contribution, beyond the increased scientific understanding at any one scale. The research activities proposed will advance discovery through the development of computational models that will elucidate for the first time ever the mechanisms of nanoparticle formation in a chemically specific way.The broader educational impacts of the proposed project will be significant as well, through the direct involvement of graduate students in the research project, as well as outreach activities in scientific education and to underrepresented groups. The research and educational activities combined will advance understanding through the teaching of computational chemistry and molecular modeling, which will provide students the opportunity to gain a deeper understanding of the physical and chemical processes involved using these multimedia-based approaches for effective teaching.
碳纳米颗粒在燃烧中的应用:多尺度视角奖摘要建议编号:CTS-0553764;主要研究者:Violi,Angela机构:密歇根大学安娜堡分校纳米颗粒尺寸范围内的颗粒排放与两个紧迫的环境问题有关-细颗粒和全球变暖对健康的影响。 流行病学研究表明,发病率的增加与测得的环境颗粒物浓度的增加之间存在相关性。 纳米颗粒的高数量浓度和小尺寸导致在肺深处的高沉积速率。已经发现超细颗粒(0.1微米)促进急性肺反应,并且它们损害巨噬细胞(肺中的清道夫细胞)从细胞外环境中吞噬和去除颗粒的能力。 因此,燃烧源排放的纳米颗粒是一个非常严重的健康问题,因为它们的大小和致癌物与它们相关。因此,必须确定大气颗粒物的化学和物理特性。燃烧是人类不断向大气中注入颗粒物的主要过程。 更重要的是,这些颗粒产生在物理上可能的最小尺寸的簇的形式与纳米尺寸。该提案的关键特征是其创新的多尺度表征的纳米颗粒形成在燃烧环境中,通过使用新的模拟方法在不同的(空间/时间)制度。 使用原子模型,如分子动力学,可以使我们能够以化学特定的方式跟踪纳米颗粒形成过程中发生的转化,提供有关纳米颗粒及其团聚的化学结构和配置的信息。 碳纳米颗粒团聚受到延伸到介观尺度的大长度和时间尺度运动的影响,即,长度为一微米或更长,时间为一微秒或更长。 为了增加模拟中可访问的时间和长度尺度并能够模拟纳米颗粒组装,有必要在更粗粒度(CG)的水平上描述颗粒。 该提案的主要研究目标是使用独特的多尺度粗粒化方法研究纳米颗粒的凝聚和组装。通过这种方法,分子系统中整个原子组之间的有效力被映射成分子(或纳米颗粒)上粗粒度位置的更简单的有效力。 实际上,这些合力是粗粒位点之间的平均力的势(即,原子团)。结果,系统的有效相空间的大小显著减小,昂贵的力计算的数量也显著减小。CG模型将允许本项目中纳米颗粒系统的模拟在长度和时间尺度上向上桥接,以便更好地访问受这些尺度影响的属性。 这种方法提供了纳米粒子自组装问题中各种时间和长度尺度之间的联系,以及理解碳纳米粒子结构和生长的原子相互作用的前所未有的机会。 集成的多尺度模拟方法提供了对烃类燃烧过程中产生的细颗粒结构的详细的分子水平描述。 通过使用这种新方法获得的结果,将有可能将这项研究扩展到重要的方向,例如这些颗粒对人类健康和全球变暖的影响。 实验研究和理论模拟的整合,在多层次的时间和颗粒尺寸尺度,将增加纳米粒子的形成和转化的整体理解。 这是智力贡献的一个重要方面,超出了任何一个尺度上增加的科学理解。 拟议的研究活动将通过开发计算模型来推动发现,这些模型将首次以化学特定的方式阐明纳米颗粒形成的机制,拟议项目的更广泛的教育影响也将是重要的,通过研究生直接参与研究项目,以及在科学教育和代表性不足的群体中开展外联活动。研究和教育活动相结合,将通过计算化学和分子建模的教学来促进理解,这将为学生提供机会,更深入地了解使用这些基于多媒体的方法进行有效教学所涉及的物理和化学过程。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Angela Violi其他文献
Experimental and modeling study of particulate formation in high-pressure diesel-like conditions
- DOI:
10.1016/s0082-0784(00)80336-7 - 发表时间:
2000-01-01 - 期刊:
- 影响因子:
- 作者:
Angela Violi;Andrea D'Anna;Antonio D'Alessio;Massimo Astarita;Bianca Maria Vaglieco - 通讯作者:
Bianca Maria Vaglieco
Structural characterization of PSMa1 functional amyloids in <em>Staphylococcus aureus</em> biofilm
- DOI:
10.1016/j.bpj.2021.11.1210 - 发表时间:
2022-02-11 - 期刊:
- 影响因子:
- 作者:
Chloe Luyet;Paolo Elvati;Yichun Wang;Changjiang Liu;J. Scott VanEpps;Nicholas Kotov;Angela Violi - 通讯作者:
Angela Violi
Reaction pathways for the formation of five-membered rings onto polyaromatic hydrocarbon framework
- DOI:
10.1016/j.fuel.2020.119023 - 发表时间:
2021-01-01 - 期刊:
- 影响因子:
- 作者:
Xuetao Shi;Qi Wang;Angela Violi - 通讯作者:
Angela Violi
On the importance of species selection for the formulation of fuel surrogates
- DOI:
10.1016/j.proci.2020.06.243 - 发表时间:
2021-01-01 - 期刊:
- 影响因子:
- 作者:
Doohyun Kim;Angela Violi - 通讯作者:
Angela Violi
Insights on the effect of ethanol on the formation of aromatics
- DOI:
10.1016/j.fuel.2019.116773 - 发表时间:
2020-03-15 - 期刊:
- 影响因子:
- 作者:
Qi Wang;Jacob C. Saldinger;Paolo Elvati;Angela Violi - 通讯作者:
Angela Violi
Angela Violi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Angela Violi', 18)}}的其他基金
Collaborative Research: ECO-CBET: Plasma-Assisted Dehalogenation of Persistent Halogen-Containing Waste Streams
合作研究:ECO-CBET:持久性含卤素废物流的等离子体辅助脱卤
- 批准号:
2318495 - 财政年份:2023
- 资助金额:
$ 24万 - 项目类别:
Standard Grant
CAREER:Uptake, fate and transport of environmental nanoparticles: from atomistic simulations to membrane diagnostics
职业:环境纳米粒子的吸收、归宿和运输:从原子模拟到膜诊断
- 批准号:
0644639 - 财政年份:2007
- 资助金额:
$ 24万 - 项目类别:
Standard Grant
Collaborative Research: Polycyclic Aromatic Hydrocarbon Growth Mechanisms in Combustion involving Cyclopentadiene and Indene
合作研究:环戊二烯和茚燃烧中多环芳烃的生长机制
- 批准号:
0210061 - 财政年份:2003
- 资助金额:
$ 24万 - 项目类别:
Standard Grant
相似海外基金
EXSOLUTION-BASED NANOPARTICLES FOR LOWEST COST GREEN HYDROGEN VIA ELECTROLYSIS
基于萃取的纳米颗粒通过电解生产成本最低的绿氢
- 批准号:
10102891 - 财政年份:2024
- 资助金额:
$ 24万 - 项目类别:
EU-Funded
Orientated biointerfacing of cell-mimetic nanoparticles
细胞模拟纳米粒子的定向生物界面
- 批准号:
DP240100770 - 财政年份:2024
- 资助金额:
$ 24万 - 项目类别:
Discovery Projects
Probing the origin and evolution of low-oxidation state iron and copper nanoparticles in the brain
探究大脑中低氧化态铁和铜纳米粒子的起源和演化
- 批准号:
EP/X031403/1 - 财政年份:2024
- 资助金额:
$ 24万 - 项目类别:
Research Grant
CAREER: Hydrogen-Bonded Organic Frameworks Nanoparticles for Ultrasound-Activated, Genetically-Targeted Neuromodulation
职业:用于超声激活、基因靶向神经调节的氢键有机框架纳米颗粒
- 批准号:
2340964 - 财政年份:2024
- 资助金额:
$ 24万 - 项目类别:
Continuing Grant
Tools to Control and Monitor Van der Waals Forces between Nanoparticles: Quantitative Insights on Biological, Environmental, and Fungal Cell Interactions.
控制和监测纳米颗粒之间范德华力的工具:对生物、环境和真菌细胞相互作用的定量见解。
- 批准号:
2335597 - 财政年份:2024
- 资助金额:
$ 24万 - 项目类别:
Continuing Grant
Unravelling Efficient Nucleic Acid Delivery Using Multilayer Nanoparticles
使用多层纳米粒子揭示有效的核酸输送
- 批准号:
DP240102642 - 财政年份:2024
- 资助金额:
$ 24万 - 项目类别:
Discovery Projects
NPBactID - Differential binding of peptoid functionalized nanoparticles to bacteria for identifying specific strains
NPBactID - 类肽功能化纳米粒子与细菌的差异结合,用于识别特定菌株
- 批准号:
EP/Y029542/1 - 财政年份:2024
- 资助金额:
$ 24万 - 项目类别:
Fellowship
Bio-inspired Nanoparticles for Mechano-Regulation of Stem Cell Fate
用于干细胞命运机械调节的仿生纳米颗粒
- 批准号:
DP240102315 - 财政年份:2024
- 资助金额:
$ 24万 - 项目类别:
Discovery Projects
Microfluidics to explore the uptake of nanoparticles by endothelial cells
微流体技术探索内皮细胞对纳米粒子的摄取
- 批准号:
DP240101579 - 财政年份:2024
- 资助金额:
$ 24万 - 项目类别:
Discovery Projects
EAGER: Low-Temperature Plasmas for Synthesis of Diamond Nanoparticles
EAGER:用于合成金刚石纳米粒子的低温等离子体
- 批准号:
2333452 - 财政年份:2024
- 资助金额:
$ 24万 - 项目类别:
Standard Grant