Algebra in Stone-Cech Compactifications and its Combinatorial Applications
Stone-Cech 紧化中的代数及其组合应用
基本信息
- 批准号:0554803
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2006
- 资助国家:美国
- 起止时间:2006-07-01 至 2010-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The principal investigator proposes to study questionsdealing with the algebraic structure of the Stone-Cechcompactification of a discrete semigroup and the combinatorialapplications of that structure. Some of the questions,while easy to state, are notoriously difficult. For example, is there a nontrivial continuous homomorphismfrom the Stone-Cech compactification of the positiveintegers to its remainder? Equivalently, is there afinite subsemigroup of the remainder whose elementsare not all idempotents? Among the applicationsof this algebraic structure have been results establishingthat certain infinite matrices are image partition regular.It is hoped that progress will be made on the difficultquestion of characterizing which infinite matrices areimage partition regular. The study of the algebraic structure of the Stone-Cechcompactification of a discrete semigroup is importantfor two main reasons. First, many of the questions thatremain open are very simple to state and quite natural.Secondly, experience has shown that information aboutthis algebraic structure has significant applicationsto the field of mathematics known as Ramsey Theory.The first such application was the algebraic proof in 1975 by Fred Galvin and Steven Glazer of the "Finite SumsTheorem", which asserts that whenever the positiveintegers are divided into finitely many classes, oneof these classes contains a sequence and all of itssums of finitely many distinct terms. After thisinitial application many other applications have been found. For examplevery easy proofs of van der Waerden's Theorem (which asserts thatwhenever the positive integers are divided into finitelymany classes, one of these must contain arbitrarilylong arithmetic progressions) and some of itsextensions have been found. The principal investigatorintends, with some of his students, to continuethe investigation of this algebraic structureand its applications.
主要研究者建议研究离散半群的Stone-Cech紧化的代数结构以及该结构的组合应用。 有些问题虽然容易陈述,但却出了名的难。 例如,从正整数的Stone-Cech紧化到它的余项是否存在非平凡连续同态?等价地,是否存在元素不全是幂等元的剩余半群的有限子半群? 在这种代数结构的应用中,已经有结果证明某些无限矩阵是象分划正则的,希望在刻画哪些无限矩阵是象分划正则的这一难题上能取得进展。 研究离散半群的Stone-Cech紧化的代数结构有两个重要原因。 首先,许多悬而未决的问题是非常简单的状态和相当自然的。其次,经验表明,有关这种代数结构的信息有重要的应用领域的数学称为拉姆齐理论。第一个这样的应用是代数证明在1975年由弗雷德高尔文和史蒂芬格雷泽的“有限和定理”,它断言,无论何时正整数被分成1000个类,这些类中的一个包含一个序列及其所有1000个不同项的和。在这最初的应用程序许多其他的应用程序已被发现。例如,非常容易证明货车德瓦尔登定理(它断言,每当正整数分为有限多类,其中一个必须包含任意长的算术级数)和它的一些扩展已被发现。校长打算,与他的一些学生,继续调查这个代数结构及其应用。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Neil Hindman其他文献
Characterization of Simplicity and Cancellativity in βS
- DOI:
10.1007/s00233-006-0666-6 - 发表时间:
2007-05-01 - 期刊:
- 影响因子:0.700
- 作者:
Neil Hindman;Dona Strauss - 通讯作者:
Dona Strauss
On IP* sets and central sets
- DOI:
10.1007/bf01212975 - 发表时间:
1994-09-01 - 期刊:
- 影响因子:1.000
- 作者:
Vitaly Bergelson;Neil Hindman - 通讯作者:
Neil Hindman
Left large subsets of free semigroups and groups that are not right large
- DOI:
10.1007/s00233-014-9622-z - 发表时间:
2014-07-17 - 期刊:
- 影响因子:0.700
- 作者:
Neil Hindman;Lakeshia Legette Jones;Monique Agnes Peters - 通讯作者:
Monique Agnes Peters
Polynomials at iterated spectra near zero
- DOI:
10.1016/j.topol.2011.06.016 - 发表时间:
2011-09-01 - 期刊:
- 影响因子:
- 作者:
Vitaly Bergelson;Neil Hindman;Dona Strauss - 通讯作者:
Dona Strauss
Separating linear expressions in the Stone–Čech compactification of direct sums
- DOI:
10.1016/j.topol.2016.07.019 - 发表时间:
2016-11-01 - 期刊:
- 影响因子:
- 作者:
Neil Hindman;Dona Strauss - 通讯作者:
Dona Strauss
Neil Hindman的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Neil Hindman', 18)}}的其他基金
Ramsey Theory: Central sets and related combinatorially rich sets
拉姆齐理论:中心集和相关的组合丰富集
- 批准号:
1160566 - 财政年份:2012
- 资助金额:
-- - 项目类别:
Standard Grant
Algebra in Stone-Cech Compactifications and its Combinatorial Applications
Stone-Cech 紧化中的代数及其组合应用
- 批准号:
0852512 - 财政年份:2009
- 资助金额:
-- - 项目类别:
Standard Grant
2003 Summer Conference on Topology and its Applications; July 9-12, 2003; Washington, DC
2003年夏季拓扑及其应用会议;
- 批准号:
0302516 - 财政年份:2003
- 资助金额:
-- - 项目类别:
Standard Grant
Semigroup Algebra at Infinity and its Combinatorial Applications
无穷大半群代数及其组合应用
- 批准号:
0243586 - 财政年份:2003
- 资助金额:
-- - 项目类别:
Continuing Grant
Semigroup Algebra at Infinity and its Combinatorial Applications
无穷大半群代数及其组合应用
- 批准号:
0070593 - 财政年份:2000
- 资助金额:
-- - 项目类别:
Continuing Grant
Mathematical Sciences: Ramsey Theory, The Theory of CompactLeft Topological Semigroups, and Their Interactions
数学科学:拉姆齐理论、紧左拓扑半群理论及其相互作用
- 批准号:
9424421 - 财政年份:1995
- 资助金额:
-- - 项目类别:
Continuing Grant
Mathematical Sciences: Combinatorics: Ultrafilters, Semigroups and Ramsey Theory
数学科学:组合数学:超滤器、半群和拉姆齐理论
- 批准号:
9025025 - 财政年份:1991
- 资助金额:
-- - 项目类别:
Continuing Grant
Mathematical Sciences: Combinatorics: Ultrafilters, Semigroups and Ramsey Theory
数学科学:组合数学:超滤器、半群和拉姆齐理论
- 批准号:
8901058 - 财政年份:1989
- 资助金额:
-- - 项目类别:
Continuing Grant
Mathematical Sciences: Ultrafilter Combinatorics: Ramsey Theory and Semigroups
数学科学:超滤组合学:拉姆齐理论和半群
- 批准号:
8520873 - 财政年份:1986
- 资助金额:
-- - 项目类别:
Continuing Grant
Mathematical Sciences: Ultrafilter Combinatorics: Ramsey Theory and Semigroups
数学科学:超滤组合学:拉姆齐理论和半群
- 批准号:
8320383 - 财政年份:1984
- 资助金额:
-- - 项目类别:
Standard Grant
相似国自然基金
模糊集理论中的Stone型对偶定理
- 批准号:12371463
- 批准年份:2023
- 资助金额:43.5 万元
- 项目类别:面上项目
函数空间上的Banach-Stone型定理
- 批准号:11301285
- 批准年份:2013
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Set in stone? 'Desired whiteness' and the urban space: A collaborative research in (post) colonial Chile.
一成不变的?
- 批准号:
ES/X006867/1 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Research Grant
University of Warwick and Bellagio Stone Limited KTP 23_24 R1
华威大学和 Bellagio Stone Limited KTP 23_24 R1
- 批准号:
10073431 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Knowledge Transfer Partnership
Vernacular Stone Masonry Houses of Bhutan: A study on the Architectural Characteristics and the Suitable Approach for Protection as Cultural Heritage
不丹乡土石砌房屋:建筑特征和文化遗产保护的适当方法研究
- 批准号:
23H01596 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (B)
University of Keele (The) and London Stone Paving Limited KTP 22_23 R4
基尔大学 (The) 和 London Stone Paving Limited KTP 22_23 R4
- 批准号:
10057859 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Knowledge Transfer Partnership
Social and Dietary Determinants of Kidney Stone Risk
肾结石风险的社会和饮食决定因素
- 批准号:
10643740 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Collaborative Research: BoCP-Design: US-South Africa: Turning CO2 to stone: the ecosystem service of the oxalate-carbonate pathway and its sensitivity to land use change
合作研究:BoCP-设计:美国-南非:将二氧化碳转化为石头:草酸盐-碳酸盐途径的生态系统服务及其对土地利用变化的敏感性
- 批准号:
2224994 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
Novel, Sustainable Composite Stone Heating Eco Radiators
新型、可持续的复合石材加热生态散热器
- 批准号:
10076165 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant for R&D
Mud and Stone Masonry Construction Method in Japan Survey of Han-ya in Tanbasasayama
日本丹波狭山汉屋调查中的泥石砌筑方法
- 批准号:
23K13479 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Early-Career Scientists
Collaborative Research: BoCP-Design: US-South Africa: Turning CO2 to stone: the ecosystem service of the oxalate-carbonate pathway and its sensitivity to land use change
合作研究:BoCP-设计:美国-南非:将二氧化碳转化为石头:草酸盐-碳酸盐途径的生态系统服务及其对土地利用变化的敏感性
- 批准号:
2224993 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
A study on the functions and manufacturing technology of stone tools in the latter half of Upper Paleolithic period in Kyushu area
九州地区旧石器时代晚期后半期石器的功能及制造技术研究
- 批准号:
23K00919 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)