Semigroup Algebra at Infinity and its Combinatorial Applications
无穷大半群代数及其组合应用
基本信息
- 批准号:0070593
- 负责人:
- 金额:$ 8.4万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2000
- 资助国家:美国
- 起止时间:2000-07-01 至 2003-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
A compact right topological semigroup is a set S which is a semigroup and a topological space and has the property that multiplication on the right by any fixed element of S is continuous. Compact right topological semigroups are guaranteed to have some well known algebraic properties, principal among which is the existence of a smallest two sided ideal which is the union of (usually infinitely many) pairwise isomorphic groups. Given an infinite semigroup S, such as the set N of positive integers under addition, the largest possible compactification of S, its Stone-Cech compactification, has a natural semigroup operation extending that of S which makes it a compact right topological semigroup. In most reasonable semigroups, including all of the (right or left) cancellative semigroups, the smallest ideal of the Stone-Cech compactification is contained in the Stone-Cech remainder. Also, one usually finds most, or all, of the idempotents of the Stone-Cech compactification lying in this remainder. The algebraic structure of the Stone-Cech remainder is the "algebra at infinity" of the title of this proposal. While much is known about the algebra at infinity of infinite semigroups, many fascinating and very natural questions remain open. Another reason for interest in the algebra at infinity of infinite semigroups is the significant consequences in Ramsey theory that are (usually quite easily) obtainable there. Ramsey Theory is that part of combinatorics that deals with the question of what sort of homogeneous structures one can expect to find in some one cell of a finite partition of specified sets (or sometimes in any suitably "large" subset). Ramsey Theory may be thought of as a generalization of one of the simplest mathematical statements, the "pigeonhole principle". This principle says that if letters are being distributed among pigeonholes and there are more letters than pigeonholes, then some pigeonhole will get more than one letter. The simplest statement in Ramsey Theory says that, if six people are at a party, then either there will be some three, none of whom have met before, or there will be some three, each pair of which have met each other. In spite of (or maybe because of) the simplicity of some of its basic statements, Ramsey Theory has had widespread applications throughout many areas of mathematics: number theory, logic, algebra, and Banach space theory to name a few. The principal investigator and his students study ways to apply the "algebra at infinity" of semigroups to obtain new results in Ramsey Theory. They investigate the algebraic structure of the Stone-Cech compactification of discrete semigroups, deriving new understandings of this structure itself, and obtaining new applications.
一个紧右拓扑半群是一个集S,它是一个半群和一个拓扑空间,并且具有这样的性质:S的任何固定元素在右边的乘法是连续的。 紧右拓扑半群保证具有一些著名的代数性质,其中主要的是存在一个最小的双边理想,它是(通常是无穷多个)两两同构群的并。给定一个无限半群S,例如正整数的集合N在加法作用下,S的最大可能紧化,即它的Stone-Cech紧化,有一个自然半群运算扩展S的自然半群运算,使它成为紧右拓扑半群。 在大多数合理半群中,包括所有(左或右)可消半群,Stone-Cech紧化的最小理想包含在Stone-Cech剩余中。 此外,人们通常会发现斯通-切赫紧化的大部分或全部幂等元都存在于这个余数中。 Stone-Cech余项的代数结构是本提案标题中的“无穷代数”。虽然我们对无穷半群的无穷代数有很多了解,但仍有许多有趣且非常自然的问题有待解决。另一个原因感兴趣的代数在无穷远的无限半群是重大后果拉姆齐理论是(通常很容易)获得。 拉姆齐理论是组合学的一部分,它处理这样的问题:人们可以期望在指定集合的有限分区的某个单元中(或者有时在任何适当的“大”子集中)找到什么样的同质结构。 拉姆齐理论可以被认为是一个最简单的数学陈述,“鸽子洞原理”的推广。 这个原则是说,如果信件被分配到各个鸽子洞中,并且信件比鸽子洞多,那么一些鸽子洞将得到不止一个字母。 拉姆齐理论中最简单的陈述说,如果有六个人参加聚会,那么要么有三个人以前从未见过面,要么有三个人,每对都见过面。 尽管(或者可能是因为)它的一些基本语句的简单性,拉姆齐理论在数学的许多领域都有广泛的应用:数论,逻辑,代数和Banach空间理论仅举几例。 首席研究员和他的学生研究如何应用“代数在无穷大”的半群,以获得新的成果拉姆齐理论。 他们研究离散半群的斯通-切赫紧化的代数结构,推导出对这种结构本身的新理解,并获得新的应用。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Neil Hindman其他文献
Characterization of Simplicity and Cancellativity in βS
- DOI:
10.1007/s00233-006-0666-6 - 发表时间:
2007-05-01 - 期刊:
- 影响因子:0.700
- 作者:
Neil Hindman;Dona Strauss - 通讯作者:
Dona Strauss
On IP* sets and central sets
- DOI:
10.1007/bf01212975 - 发表时间:
1994-09-01 - 期刊:
- 影响因子:1.000
- 作者:
Vitaly Bergelson;Neil Hindman - 通讯作者:
Neil Hindman
Left large subsets of free semigroups and groups that are not right large
- DOI:
10.1007/s00233-014-9622-z - 发表时间:
2014-07-17 - 期刊:
- 影响因子:0.700
- 作者:
Neil Hindman;Lakeshia Legette Jones;Monique Agnes Peters - 通讯作者:
Monique Agnes Peters
Polynomials at iterated spectra near zero
- DOI:
10.1016/j.topol.2011.06.016 - 发表时间:
2011-09-01 - 期刊:
- 影响因子:
- 作者:
Vitaly Bergelson;Neil Hindman;Dona Strauss - 通讯作者:
Dona Strauss
Separating linear expressions in the Stone–Čech compactification of direct sums
- DOI:
10.1016/j.topol.2016.07.019 - 发表时间:
2016-11-01 - 期刊:
- 影响因子:
- 作者:
Neil Hindman;Dona Strauss - 通讯作者:
Dona Strauss
Neil Hindman的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Neil Hindman', 18)}}的其他基金
Ramsey Theory: Central sets and related combinatorially rich sets
拉姆齐理论:中心集和相关的组合丰富集
- 批准号:
1160566 - 财政年份:2012
- 资助金额:
$ 8.4万 - 项目类别:
Standard Grant
Algebra in Stone-Cech Compactifications and its Combinatorial Applications
Stone-Cech 紧化中的代数及其组合应用
- 批准号:
0852512 - 财政年份:2009
- 资助金额:
$ 8.4万 - 项目类别:
Standard Grant
Algebra in Stone-Cech Compactifications and its Combinatorial Applications
Stone-Cech 紧化中的代数及其组合应用
- 批准号:
0554803 - 财政年份:2006
- 资助金额:
$ 8.4万 - 项目类别:
Standard Grant
2003 Summer Conference on Topology and its Applications; July 9-12, 2003; Washington, DC
2003年夏季拓扑及其应用会议;
- 批准号:
0302516 - 财政年份:2003
- 资助金额:
$ 8.4万 - 项目类别:
Standard Grant
Semigroup Algebra at Infinity and its Combinatorial Applications
无穷大半群代数及其组合应用
- 批准号:
0243586 - 财政年份:2003
- 资助金额:
$ 8.4万 - 项目类别:
Continuing Grant
Mathematical Sciences: Ramsey Theory, The Theory of CompactLeft Topological Semigroups, and Their Interactions
数学科学:拉姆齐理论、紧左拓扑半群理论及其相互作用
- 批准号:
9424421 - 财政年份:1995
- 资助金额:
$ 8.4万 - 项目类别:
Continuing Grant
Mathematical Sciences: Combinatorics: Ultrafilters, Semigroups and Ramsey Theory
数学科学:组合数学:超滤器、半群和拉姆齐理论
- 批准号:
9025025 - 财政年份:1991
- 资助金额:
$ 8.4万 - 项目类别:
Continuing Grant
Mathematical Sciences: Combinatorics: Ultrafilters, Semigroups and Ramsey Theory
数学科学:组合数学:超滤器、半群和拉姆齐理论
- 批准号:
8901058 - 财政年份:1989
- 资助金额:
$ 8.4万 - 项目类别:
Continuing Grant
Mathematical Sciences: Ultrafilter Combinatorics: Ramsey Theory and Semigroups
数学科学:超滤组合学:拉姆齐理论和半群
- 批准号:
8520873 - 财政年份:1986
- 资助金额:
$ 8.4万 - 项目类别:
Continuing Grant
Mathematical Sciences: Ultrafilter Combinatorics: Ramsey Theory and Semigroups
数学科学:超滤组合学:拉姆齐理论和半群
- 批准号:
8320383 - 财政年份:1984
- 资助金额:
$ 8.4万 - 项目类别:
Standard Grant
相似海外基金
REU Site: Research Experiences for Undergraduates in Algebra and Discrete Mathematics at Auburn University
REU 网站:奥本大学代数和离散数学本科生的研究经验
- 批准号:
2349684 - 财政年份:2024
- 资助金额:
$ 8.4万 - 项目类别:
Continuing Grant
Conference: Underrepresented Students in Algebra and Topology Research Symposium (USTARS)
会议:代数和拓扑研究研讨会(USTARS)中代表性不足的学生
- 批准号:
2400006 - 财政年份:2024
- 资助金额:
$ 8.4万 - 项目类别:
Standard Grant
Positive and Mixed Characteristic Birational Geometry and its Connections with Commutative Algebra and Arithmetic Geometry
正混合特征双有理几何及其与交换代数和算术几何的联系
- 批准号:
2401360 - 财政年份:2024
- 资助金额:
$ 8.4万 - 项目类别:
Standard Grant
On combinatorics, the algebra, topology, and geometry of a new class of graphs that generalize ordinary and ribbon graphs
关于组合学、一类新图的代数、拓扑和几何,概括了普通图和带状图
- 批准号:
24K06659 - 财政年份:2024
- 资助金额:
$ 8.4万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
RTG: Applied Algebra at the University of South Florida
RTG:南佛罗里达大学应用代数
- 批准号:
2342254 - 财政年份:2024
- 资助金额:
$ 8.4万 - 项目类别:
Continuing Grant
Conference: Research School: Bridges between Algebra and Combinatorics
会议:研究学院:代数与组合学之间的桥梁
- 批准号:
2416063 - 财政年份:2024
- 资助金额:
$ 8.4万 - 项目类别:
Standard Grant
Conference: Fairfax Algebra Days 2024
会议:2024 年费尔法克斯代数日
- 批准号:
2337178 - 财政年份:2024
- 资助金额:
$ 8.4万 - 项目类别:
Standard Grant
CAREER: Leveraging Randomization and Structure in Computational Linear Algebra for Data Science
职业:利用计算线性代数中的随机化和结构进行数据科学
- 批准号:
2338655 - 财政年份:2024
- 资助金额:
$ 8.4万 - 项目类别:
Continuing Grant
Stable Homotopy Theory in Algebra, Topology, and Geometry
代数、拓扑和几何中的稳定同伦理论
- 批准号:
2414922 - 财政年份:2024
- 资助金额:
$ 8.4万 - 项目类别:
Standard Grant