Semigroup Algebra at Infinity and its Combinatorial Applications
无穷大半群代数及其组合应用
基本信息
- 批准号:0243586
- 负责人:
- 金额:$ 13.93万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2003
- 资助国家:美国
- 起止时间:2003-07-01 至 2006-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Abstract for award of Hindman DMS-0243586The principal investigator and his students will continue the investigation of the algebraic scructure of the Stone-Cech compactification of a discrete semigroup and its applications to Ramsey Theory. Significant progress continues to be made in both areas, but much remains to be done. Among the major algebraic problems which is still unsolved is whether there is a nontrivial continuous homomorphism from the Stone-Cech compactification of the positive integers to its remainder, N*. That question can be stated equivalently as whether there is a finite subsemgroup of N* whose members are not all idempotents.The proposed algebraic studies have significant potential applications to Ramsey Theory -- that part of combinatorics which establishes the existence of highly regular substructures of given structures that are partitioned into finitely many classes (or "finitely colored"). One of the earliest applications of the algebra of the Stone-Cech compactification to Ramsey Theory was a simple proof of the following statement: If the positive integers are colored red and blue, then there is either a sequence all of whose sums (without repetition) are red or there is a sequence all of whose sums are blue. Additional applications continue to be discovered.
主要研究者和他的学生将继续研究离散半群的stone - ech紧化的代数结构及其在Ramsey理论中的应用。这两个领域继续取得重大进展,但仍有许多工作要做。在尚未解决的主要代数问题中,是否存在从正整数的stone - ech紧化到其余数N*的非平凡连续同态。这个问题可以等价地表述为是否存在N*的有限子群,其成员不都是幂等的。提出的代数研究对拉姆齐理论有重要的潜在应用——拉姆齐理论是组合学的一部分,它建立了给定结构的高度规则子结构的存在,这些结构被划分为有限多个类(或“有限有色”)。斯通-切赫紧化代数在拉姆齐理论中的最早应用之一是对以下陈述的一个简单证明:如果正整数被涂成红色和蓝色,那么存在一个序列的和(不重复)都是红色的,或者存在一个序列的和都是蓝色的。更多的应用程序还在继续被发现。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Neil Hindman其他文献
Characterization of Simplicity and Cancellativity in βS
- DOI:
10.1007/s00233-006-0666-6 - 发表时间:
2007-05-01 - 期刊:
- 影响因子:0.700
- 作者:
Neil Hindman;Dona Strauss - 通讯作者:
Dona Strauss
On IP* sets and central sets
- DOI:
10.1007/bf01212975 - 发表时间:
1994-09-01 - 期刊:
- 影响因子:1.000
- 作者:
Vitaly Bergelson;Neil Hindman - 通讯作者:
Neil Hindman
Left large subsets of free semigroups and groups that are not right large
- DOI:
10.1007/s00233-014-9622-z - 发表时间:
2014-07-17 - 期刊:
- 影响因子:0.700
- 作者:
Neil Hindman;Lakeshia Legette Jones;Monique Agnes Peters - 通讯作者:
Monique Agnes Peters
Polynomials at iterated spectra near zero
- DOI:
10.1016/j.topol.2011.06.016 - 发表时间:
2011-09-01 - 期刊:
- 影响因子:
- 作者:
Vitaly Bergelson;Neil Hindman;Dona Strauss - 通讯作者:
Dona Strauss
Separating linear expressions in the Stone–Čech compactification of direct sums
- DOI:
10.1016/j.topol.2016.07.019 - 发表时间:
2016-11-01 - 期刊:
- 影响因子:
- 作者:
Neil Hindman;Dona Strauss - 通讯作者:
Dona Strauss
Neil Hindman的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Neil Hindman', 18)}}的其他基金
Ramsey Theory: Central sets and related combinatorially rich sets
拉姆齐理论:中心集和相关的组合丰富集
- 批准号:
1160566 - 财政年份:2012
- 资助金额:
$ 13.93万 - 项目类别:
Standard Grant
Algebra in Stone-Cech Compactifications and its Combinatorial Applications
Stone-Cech 紧化中的代数及其组合应用
- 批准号:
0852512 - 财政年份:2009
- 资助金额:
$ 13.93万 - 项目类别:
Standard Grant
Algebra in Stone-Cech Compactifications and its Combinatorial Applications
Stone-Cech 紧化中的代数及其组合应用
- 批准号:
0554803 - 财政年份:2006
- 资助金额:
$ 13.93万 - 项目类别:
Standard Grant
2003 Summer Conference on Topology and its Applications; July 9-12, 2003; Washington, DC
2003年夏季拓扑及其应用会议;
- 批准号:
0302516 - 财政年份:2003
- 资助金额:
$ 13.93万 - 项目类别:
Standard Grant
Semigroup Algebra at Infinity and its Combinatorial Applications
无穷大半群代数及其组合应用
- 批准号:
0070593 - 财政年份:2000
- 资助金额:
$ 13.93万 - 项目类别:
Continuing Grant
Mathematical Sciences: Ramsey Theory, The Theory of CompactLeft Topological Semigroups, and Their Interactions
数学科学:拉姆齐理论、紧左拓扑半群理论及其相互作用
- 批准号:
9424421 - 财政年份:1995
- 资助金额:
$ 13.93万 - 项目类别:
Continuing Grant
Mathematical Sciences: Combinatorics: Ultrafilters, Semigroups and Ramsey Theory
数学科学:组合数学:超滤器、半群和拉姆齐理论
- 批准号:
9025025 - 财政年份:1991
- 资助金额:
$ 13.93万 - 项目类别:
Continuing Grant
Mathematical Sciences: Combinatorics: Ultrafilters, Semigroups and Ramsey Theory
数学科学:组合数学:超滤器、半群和拉姆齐理论
- 批准号:
8901058 - 财政年份:1989
- 资助金额:
$ 13.93万 - 项目类别:
Continuing Grant
Mathematical Sciences: Ultrafilter Combinatorics: Ramsey Theory and Semigroups
数学科学:超滤组合学:拉姆齐理论和半群
- 批准号:
8520873 - 财政年份:1986
- 资助金额:
$ 13.93万 - 项目类别:
Continuing Grant
Mathematical Sciences: Ultrafilter Combinatorics: Ramsey Theory and Semigroups
数学科学:超滤组合学:拉姆齐理论和半群
- 批准号:
8320383 - 财政年份:1984
- 资助金额:
$ 13.93万 - 项目类别:
Standard Grant
相似海外基金
REU Site: Research Experiences for Undergraduates in Algebra and Discrete Mathematics at Auburn University
REU 网站:奥本大学代数和离散数学本科生的研究经验
- 批准号:
2349684 - 财政年份:2024
- 资助金额:
$ 13.93万 - 项目类别:
Continuing Grant
Conference: Underrepresented Students in Algebra and Topology Research Symposium (USTARS)
会议:代数和拓扑研究研讨会(USTARS)中代表性不足的学生
- 批准号:
2400006 - 财政年份:2024
- 资助金额:
$ 13.93万 - 项目类别:
Standard Grant
Positive and Mixed Characteristic Birational Geometry and its Connections with Commutative Algebra and Arithmetic Geometry
正混合特征双有理几何及其与交换代数和算术几何的联系
- 批准号:
2401360 - 财政年份:2024
- 资助金额:
$ 13.93万 - 项目类别:
Standard Grant
On combinatorics, the algebra, topology, and geometry of a new class of graphs that generalize ordinary and ribbon graphs
关于组合学、一类新图的代数、拓扑和几何,概括了普通图和带状图
- 批准号:
24K06659 - 财政年份:2024
- 资助金额:
$ 13.93万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
RTG: Applied Algebra at the University of South Florida
RTG:南佛罗里达大学应用代数
- 批准号:
2342254 - 财政年份:2024
- 资助金额:
$ 13.93万 - 项目类别:
Continuing Grant
Conference: Research School: Bridges between Algebra and Combinatorics
会议:研究学院:代数与组合学之间的桥梁
- 批准号:
2416063 - 财政年份:2024
- 资助金额:
$ 13.93万 - 项目类别:
Standard Grant
Conference: Fairfax Algebra Days 2024
会议:2024 年费尔法克斯代数日
- 批准号:
2337178 - 财政年份:2024
- 资助金额:
$ 13.93万 - 项目类别:
Standard Grant
CAREER: Leveraging Randomization and Structure in Computational Linear Algebra for Data Science
职业:利用计算线性代数中的随机化和结构进行数据科学
- 批准号:
2338655 - 财政年份:2024
- 资助金额:
$ 13.93万 - 项目类别:
Continuing Grant
Stable Homotopy Theory in Algebra, Topology, and Geometry
代数、拓扑和几何中的稳定同伦理论
- 批准号:
2414922 - 财政年份:2024
- 资助金额:
$ 13.93万 - 项目类别:
Standard Grant