Algebra in Stone-Cech Compactifications and its Combinatorial Applications
Stone-Cech 紧化中的代数及其组合应用
基本信息
- 批准号:0852512
- 负责人:
- 金额:$ 20.22万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2009
- 资助国家:美国
- 起止时间:2009-07-01 至 2012-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
ABSTRACTPrincipal Investigator: Hindman, Neil Proposal Number: DMS - 0852512Institution: Howard UniversityTitle: Algebra in Stone-Cech Compactifications and its Combinatorial ApplicationsThis award is funded under the American Recovery and Reinvestment Act of 2009 (Public Law 111-5).A right topological semigroup is a set S which is a semigroup and a topological space and has the property that multiplication on the right by any fixed element of S is continuous. If S is a discrete semigroup, then its Stone-Cech compactification is, in a natural way, a compact Hausdorff right topological semigroup. As is true of any compact Hausdorff right topological semigroup, this Stone-Cech compactification has a smallest two sided ideal, and this ideal usually has elaborate algebraic structure. This project involves the study of the algebraic structure of the Stone-Cech compactification and its smallest ideal and investigation of the combinatorial applications of that structure, primarily to Ramsey Theory.Ramsey Theory is that part of combinatorics that deals with the question of what sort of homogeneous structures one can expect to find in some one cell of a finite partition (or "coloring") of specified sets. For example, the simplest nontrivial instance of the infinite version of Ramsey's Theorem says that whenever the two element subsets of the set N of positive integers are finitely colored, there must be some infinite subset of N all of whose two element subsets are the same color. The principal investigator gained some fame many years ago when he proved that whenever N is finitely colored, there must exist in one color an infinite sequence together with all of its finite sums of distinct terms without repetition. The original proof was elementary, but very complicated. But in 1975, Fred Galvin and Steven Glazer showed that this "Finite Sums Theorem" is a completely trivial consequence of the fact that the Stone-Cech compactification of N can be given an algebraic structure extending ordinary addition which is a compact right topological semigroup, and therefore has idempotents, that is elements such that p + p = p. Since then, numerous other applications of the algebraic structure of Stone-Cech compactifications to Ramsey Theory have been found.
主要研究者:Hindman,Neil 提案编号:DMS -0852512机构:霍华德大学题目:Stone-Cech紧化及其组合应用中的代数这个奖项是根据2009年美国复苏和再投资法案(公法111-5)资助的。右拓扑半群是一个集合S,它是一个半群和拓扑空间,并且具有S的任何固定元素在右边的乘法是连续的性质。 如果S是一个离散半群,那么它的Stone-Cech紧化自然地是一个紧Hausdorff右拓扑半群。与任何紧Hausdorff右拓扑半群一样,这个Stone-Cech紧化有一个最小的双边理想,并且这个理想通常具有复杂的代数结构。该项目涉及研究斯通-切赫紧化的代数结构及其最小理想,并调查该结构的组合应用,主要是拉姆齐理论。拉姆齐理论是组合学的一部分,它处理的问题是什么样的齐次结构,人们可以期望在指定集合的有限划分(或“着色”)的某个单元中找到。例如,拉姆齐定理的无限版本的最简单的非平凡例子说,每当正整数集合N的两个元素子集是双着色的时,必须存在N的某个无限子集,其所有两个元素子集都是相同的颜色。首席研究员获得了一些名声多年前,当他证明,每当N是彩色的,必须存在于一个颜色的无限序列连同其所有的有限和不同的条款没有重复。最初的证明是基本的,但非常复杂。但是在1975年,Fred Galvin和Steven Glazer证明了这个“有限和定理”是一个完全平凡的结果,因为N的Stone-Cech紧化可以被赋予一个代数结构,该代数结构扩展了作为紧右拓扑半群的普通加法,因此具有幂等元,即使得p + p = p的元素。Stone-Cech紧化的代数结构在Ramsey理论中的许多其他应用也被发现。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Neil Hindman其他文献
Characterization of Simplicity and Cancellativity in βS
- DOI:
10.1007/s00233-006-0666-6 - 发表时间:
2007-05-01 - 期刊:
- 影响因子:0.700
- 作者:
Neil Hindman;Dona Strauss - 通讯作者:
Dona Strauss
On IP* sets and central sets
- DOI:
10.1007/bf01212975 - 发表时间:
1994-09-01 - 期刊:
- 影响因子:1.000
- 作者:
Vitaly Bergelson;Neil Hindman - 通讯作者:
Neil Hindman
Left large subsets of free semigroups and groups that are not right large
- DOI:
10.1007/s00233-014-9622-z - 发表时间:
2014-07-17 - 期刊:
- 影响因子:0.700
- 作者:
Neil Hindman;Lakeshia Legette Jones;Monique Agnes Peters - 通讯作者:
Monique Agnes Peters
Polynomials at iterated spectra near zero
- DOI:
10.1016/j.topol.2011.06.016 - 发表时间:
2011-09-01 - 期刊:
- 影响因子:
- 作者:
Vitaly Bergelson;Neil Hindman;Dona Strauss - 通讯作者:
Dona Strauss
Separating linear expressions in the Stone–Čech compactification of direct sums
- DOI:
10.1016/j.topol.2016.07.019 - 发表时间:
2016-11-01 - 期刊:
- 影响因子:
- 作者:
Neil Hindman;Dona Strauss - 通讯作者:
Dona Strauss
Neil Hindman的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Neil Hindman', 18)}}的其他基金
Ramsey Theory: Central sets and related combinatorially rich sets
拉姆齐理论:中心集和相关的组合丰富集
- 批准号:
1160566 - 财政年份:2012
- 资助金额:
$ 20.22万 - 项目类别:
Standard Grant
Algebra in Stone-Cech Compactifications and its Combinatorial Applications
Stone-Cech 紧化中的代数及其组合应用
- 批准号:
0554803 - 财政年份:2006
- 资助金额:
$ 20.22万 - 项目类别:
Standard Grant
2003 Summer Conference on Topology and its Applications; July 9-12, 2003; Washington, DC
2003年夏季拓扑及其应用会议;
- 批准号:
0302516 - 财政年份:2003
- 资助金额:
$ 20.22万 - 项目类别:
Standard Grant
Semigroup Algebra at Infinity and its Combinatorial Applications
无穷大半群代数及其组合应用
- 批准号:
0243586 - 财政年份:2003
- 资助金额:
$ 20.22万 - 项目类别:
Continuing Grant
Semigroup Algebra at Infinity and its Combinatorial Applications
无穷大半群代数及其组合应用
- 批准号:
0070593 - 财政年份:2000
- 资助金额:
$ 20.22万 - 项目类别:
Continuing Grant
Mathematical Sciences: Ramsey Theory, The Theory of CompactLeft Topological Semigroups, and Their Interactions
数学科学:拉姆齐理论、紧左拓扑半群理论及其相互作用
- 批准号:
9424421 - 财政年份:1995
- 资助金额:
$ 20.22万 - 项目类别:
Continuing Grant
Mathematical Sciences: Combinatorics: Ultrafilters, Semigroups and Ramsey Theory
数学科学:组合数学:超滤器、半群和拉姆齐理论
- 批准号:
9025025 - 财政年份:1991
- 资助金额:
$ 20.22万 - 项目类别:
Continuing Grant
Mathematical Sciences: Combinatorics: Ultrafilters, Semigroups and Ramsey Theory
数学科学:组合数学:超滤器、半群和拉姆齐理论
- 批准号:
8901058 - 财政年份:1989
- 资助金额:
$ 20.22万 - 项目类别:
Continuing Grant
Mathematical Sciences: Ultrafilter Combinatorics: Ramsey Theory and Semigroups
数学科学:超滤组合学:拉姆齐理论和半群
- 批准号:
8520873 - 财政年份:1986
- 资助金额:
$ 20.22万 - 项目类别:
Continuing Grant
Mathematical Sciences: Ultrafilter Combinatorics: Ramsey Theory and Semigroups
数学科学:超滤组合学:拉姆齐理论和半群
- 批准号:
8320383 - 财政年份:1984
- 资助金额:
$ 20.22万 - 项目类别:
Standard Grant
相似国自然基金
模糊集理论中的Stone型对偶定理
- 批准号:12371463
- 批准年份:2023
- 资助金额:43.5 万元
- 项目类别:面上项目
函数空间上的Banach-Stone型定理
- 批准号:11301285
- 批准年份:2013
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Set in stone? 'Desired whiteness' and the urban space: A collaborative research in (post) colonial Chile.
一成不变的?
- 批准号:
ES/X006867/1 - 财政年份:2024
- 资助金额:
$ 20.22万 - 项目类别:
Research Grant
University of Warwick and Bellagio Stone Limited KTP 23_24 R1
华威大学和 Bellagio Stone Limited KTP 23_24 R1
- 批准号:
10073431 - 财政年份:2024
- 资助金额:
$ 20.22万 - 项目类别:
Knowledge Transfer Partnership
University of Keele (The) and London Stone Paving Limited KTP 22_23 R4
基尔大学 (The) 和 London Stone Paving Limited KTP 22_23 R4
- 批准号:
10057859 - 财政年份:2023
- 资助金额:
$ 20.22万 - 项目类别:
Knowledge Transfer Partnership
Vernacular Stone Masonry Houses of Bhutan: A study on the Architectural Characteristics and the Suitable Approach for Protection as Cultural Heritage
不丹乡土石砌房屋:建筑特征和文化遗产保护的适当方法研究
- 批准号:
23H01596 - 财政年份:2023
- 资助金额:
$ 20.22万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Social and Dietary Determinants of Kidney Stone Risk
肾结石风险的社会和饮食决定因素
- 批准号:
10643740 - 财政年份:2023
- 资助金额:
$ 20.22万 - 项目类别:
Collaborative Research: BoCP-Design: US-South Africa: Turning CO2 to stone: the ecosystem service of the oxalate-carbonate pathway and its sensitivity to land use change
合作研究:BoCP-设计:美国-南非:将二氧化碳转化为石头:草酸盐-碳酸盐途径的生态系统服务及其对土地利用变化的敏感性
- 批准号:
2224994 - 财政年份:2023
- 资助金额:
$ 20.22万 - 项目类别:
Standard Grant
Novel, Sustainable Composite Stone Heating Eco Radiators
新型、可持续的复合石材加热生态散热器
- 批准号:
10076165 - 财政年份:2023
- 资助金额:
$ 20.22万 - 项目类别:
Grant for R&D
A study on the functions and manufacturing technology of stone tools in the latter half of Upper Paleolithic period in Kyushu area
九州地区旧石器时代晚期后半期石器的功能及制造技术研究
- 批准号:
23K00919 - 财政年份:2023
- 资助金额:
$ 20.22万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
The archaeological study on local societies in state formation process as seen from 3D measurement of horizontal stone chamber tombs in Kyushu, Japan, during the 6th to 7th centuries AD
从公元六至七世纪日本九州水平石室墓的三维测量看地方社会国家形成过程的考古研究
- 批准号:
23K00933 - 财政年份:2023
- 资助金额:
$ 20.22万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Mud and Stone Masonry Construction Method in Japan Survey of Han-ya in Tanbasasayama
日本丹波狭山汉屋调查中的泥石砌筑方法
- 批准号:
23K13479 - 财政年份:2023
- 资助金额:
$ 20.22万 - 项目类别:
Grant-in-Aid for Early-Career Scientists