RUI: Solitons and Oscillons in Quantum Field Theory
RUI:量子场论中的孤子和振荡
基本信息
- 批准号:0555338
- 负责人:
- 金额:$ 9.07万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2006
- 资助国家:美国
- 起止时间:2006-06-01 至 2010-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This proposal requests support for a program of research into particular solutions of nonlinear field theories known as solitons and oscillons, or "breathers". The PI is a faculty member atan undergraduate institution and involves undergraduates in his research. He also has strong ties to MIT, where he plans to spend a sabbatical in the 2006-7 academic year, and to collaborators in other institutions both in the U.S. and abroad. Solitons are coherent superpositions of waves in nonlinear theories which do not dissipate in time, but preserve their configurations over periods long compared with natural time scales. Oscillons are similar solutions which oscillate, or "breathe" periodically. An important problem is whether they are stable under quantum corrections; such stability is essential for these solutions to have any physical significance. The PI and his colleagues will tackle this problem with a combination of analytic and computional techniques. Possible applications occur in the early universe, where they might provide a solution to the problems of baryon generation and the baryon-anti-baryon asymmetry of the universe. They may also play a role in Casimir forces and have applications to nanotechnology. The broader impacts also include significant improvements in undergraduate course materials regarding modern physics, involvement of undergraduates in research, and lectures for fellow academics and the public at large.
这项提议要求支持一项研究被称为孤子和振子或“呼吸子”的非线性场论的特定解的计划。PI是一家本科生机构的教员,让本科生参与他的研究。他还与麻省理工学院关系密切,他计划在2006-7学年在那里休假,并与美国和海外其他机构的合作者保持密切联系。孤子是非线性理论中的波的相干叠加,它不会随时间消散,但与自然时间尺度相比,在较长的时间内保持其构型。振荡器是一种类似的溶液,会周期性地振荡或“呼吸”。一个重要的问题是它们在量子修正下是否稳定;这种稳定性对于这些解决方案具有任何物理意义是必不可少的。PI和他的同事们将结合分析和计算技术来解决这个问题。可能的应用出现在早期宇宙中,在那里它们可能为重子生成和宇宙的重子-反重子不对称问题提供解决方案。它们还可能在卡西米尔力中发挥作用,并应用于纳米技术。更广泛的影响还包括关于现代物理的本科课程材料的显著改进,本科生参与研究,以及为同行学者和广大公众讲课。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Noah Graham其他文献
Non-factive Understanding: A Statement and Defense
- DOI:
10.1007/s10838-019-09469-3 - 发表时间:
2019-09-01 - 期刊:
- 影响因子:0.900
- 作者:
Yannick Doyle;Spencer Egan;Noah Graham;Kareem Khalifa - 通讯作者:
Kareem Khalifa
Correction to: Factors associated with late risks of breast cancer‑specific mortality in the SEER registry
- DOI:
10.1007/s10549-021-06268-7 - 发表时间:
2021-07-06 - 期刊:
- 影响因子:3.000
- 作者:
José P. Leone;Carlos T. Vallejo;Michael J. Hassett;Julieta Leone;Noah Graham;Nabihah Tayob;Rachel A. Freedman;Sara M. Tolaney;Bernardo A. Leone;Eric P. Winer;Nancy U. Lin - 通讯作者:
Nancy U. Lin
Estimating long-term mortality in women with hormone receptor-positive breast cancer: The ‘ESTIMATE’ tool
- DOI:
10.1016/j.ejca.2022.06.029 - 发表时间:
2022-09-01 - 期刊:
- 影响因子:
- 作者:
José P. Leone;Noah Graham;Sara M. Tolaney;Bernardo A. Leone;Rachel A. Freedman;Michael J. Hassett;Julieta Leone;Carlos T. Vallejo;Eric P. Winer;Nancy U. Lin;Nabihah Tayob - 通讯作者:
Nabihah Tayob
An electroweak oscillon.
弱电振荡。
- DOI:
10.1103/physrevlett.98.101801 - 发表时间:
2006 - 期刊:
- 影响因子:8.6
- 作者:
Noah Graham - 通讯作者:
Noah Graham
Estimating mortality in women with triple-negative breast cancer: The ‘ESTIMATE triple-negative’ tool
- DOI:
10.1016/j.ejca.2023.05.018 - 发表时间:
2023-08-01 - 期刊:
- 影响因子:
- 作者:
José P. Leone;Noah Graham;Julieta Leone;Sara M. Tolaney;Bernardo A. Leone;Rachel A. Freedman;Michael J. Hassett;Carlos T. Vallejo;Eric P. Winer;Nancy U. Lin;Nabihah Tayob - 通讯作者:
Nabihah Tayob
Noah Graham的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Noah Graham', 18)}}的其他基金
RUI: Quantum and Thermal Fluctuations in Monopoles, Spacetime, and Materials
RUI:单极子、时空和材料中的量子和热涨落
- 批准号:
2209582 - 财政年份:2022
- 资助金额:
$ 9.07万 - 项目类别:
Standard Grant
RUI: Scattering Approach to Quantum Fluctuations: Casimir Forces, Curved Spacetime, and Solitons
RUI:量子涨落的散射方法:卡西米尔力、弯曲时空和孤子
- 批准号:
1820700 - 财政年份:2018
- 资助金额:
$ 9.07万 - 项目类别:
Standard Grant
RUI: Casimir Forces From Scattering Theory
RUI:散射理论中的卡西米尔力
- 批准号:
1520293 - 财政年份:2015
- 资助金额:
$ 9.07万 - 项目类别:
Standard Grant
RUI: Scattering Theory Casimir Methods and Coherent Structures in the Early Universe
RUI:散射理论卡西米尔方法和早期宇宙的相干结构
- 批准号:
1213456 - 财政年份:2012
- 资助金额:
$ 9.07万 - 项目类别:
Standard Grant
RUI: Oscillons and Casimir Forces in Classical and Quantum Field Theory
RUI:经典和量子场论中的振荡和卡西米尔力
- 批准号:
0855426 - 财政年份:2009
- 资助金额:
$ 9.07万 - 项目类别:
Standard Grant
相似海外基金
Unshackling solitons through ultimate dispersion control
通过终极色散控制释放孤子的束缚
- 批准号:
DP230102200 - 财政年份:2023
- 资助金额:
$ 9.07万 - 项目类别:
Discovery Projects
CAREER: New Frontiers in the Dynamics of Topological Solitons
职业:拓扑孤子动力学的新领域
- 批准号:
2235233 - 财政年份:2023
- 资助金额:
$ 9.07万 - 项目类别:
Continuing Grant
Study on the classification of Yamabe solitons and its applications
山边孤子的分类及其应用研究
- 批准号:
23K03107 - 财政年份:2023
- 资助金额:
$ 9.07万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Geometry and Dynamics of Topological Solitons
拓扑孤子的几何和动力学
- 批准号:
2650914 - 财政年份:2022
- 资助金额:
$ 9.07万 - 项目类别:
Studentship
Theoretical Physics - Optical topological solitons
理论物理-光学拓扑孤子
- 批准号:
2741286 - 财政年份:2022
- 资助金额:
$ 9.07万 - 项目类别:
Studentship
Conference on Algebraic Geometry, Mathematical Physics, and Solitons
代数几何、数学物理和孤子会议
- 批准号:
2231173 - 财政年份:2022
- 资助金额:
$ 9.07万 - 项目类别:
Standard Grant
Solitons et extensions du modèle standard en physique des particules
粒子物理模型标准的孤立子和扩展
- 批准号:
SAPIN-2019-00029 - 财政年份:2022
- 资助金额:
$ 9.07万 - 项目类别:
Subatomic Physics Envelope - Individual
Quantum solitons and cluster states with well-defined atom number
具有明确原子数的量子孤子和簇态
- 批准号:
2748292 - 财政年份:2022
- 资助金额:
$ 9.07万 - 项目类别:
Studentship
Liquid crystal solitons as vehicles for nano-cargo transport
液晶孤子作为纳米货物运输的载体
- 批准号:
2857344 - 财政年份:2022
- 资助金额:
$ 9.07万 - 项目类别:
Studentship
Analysis and applications of geometric Schrodinger equations: topological solitons and dynamics in ferromagnets
几何薛定谔方程的分析和应用:拓扑孤子和铁磁体动力学
- 批准号:
RGPIN-2018-03847 - 财政年份:2022
- 资助金额:
$ 9.07万 - 项目类别:
Discovery Grants Program - Individual