RUI: Scattering Theory Casimir Methods and Coherent Structures in the Early Universe

RUI:散射理论卡西米尔方法和早期宇宙的相干结构

基本信息

  • 批准号:
    1213456
  • 负责人:
  • 金额:
    $ 12万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2012
  • 资助国家:
    美国
  • 起止时间:
    2012-07-15 至 2015-06-30
  • 项目状态:
    已结题

项目摘要

This award funds the research activities of Professor Noah Graham at Middlebury College. The work is organized around two distinct, though related, lines of inquiry.The first research direction focuses on Casimir forces, which arise from quantum-mechanical fluctuations of charges and fields. While Casimir forces are negligible in our everyday experience, at small distances -- in particular, at distance scales relevant to the next generation of microelectromechanical devices -- they can become important. Recent progress has established a systematic framework for calculating these forces in a wide range of situations relevant to nanotechnology. In this approach, one calculates the Casimir force by relating it to fundamental quantities associated with the reflection and scattering of light. This work will create new techniques for computing the necessary reflection and scattering data, and then will apply the results to a wide range of Casimir force calculations. The methods to be used to analyze light reflection and scattering are very general, and thus potentially applicable to a wide range of problems in physics and engineering. The second research direction focuses on the role played by oscillons -- extremely long-lived, localized, oscillatory solutions to the nonlinear equations of motion that arise in field theory models -- during the "reheating" epoch of the early universe, following cosmic inflation and the Big Bang. Here large-scale numerical simulation will play a key role in understanding the self-organizing behavior through which oscillons emerge from a chaotic thermal background.Both of these lines of research will have significant broader impacts in other fields of science and engineering, and in education and training of students. The Casimir project will develop new computational techniques with a wide range of potential applications, while the oscillon project will push the current boundaries of high-performance parallel computing. Through both summer research projects and integration of aspects of this research into the undergraduate curriculum at Middlebury College, both projects will also offer significant new opportunities for students to learn both fundamental physics and broadly applicable analytic and computational skills.
该奖项资助了米德尔伯里学院诺亚·格雷厄姆教授的研究活动。这项工作围绕着两条截然不同但又相互关联的研究路线展开。第一个研究方向集中在卡西米尔力上,卡西米尔力是由电荷和场的量子力学涨落引起的。虽然卡西米尔力在我们的日常经验中可以忽略不计,但在很小的距离上--特别是在与下一代微型机电设备相关的距离尺度上--它们可以变得重要。最近的进展为在与纳米技术有关的广泛情况下计算这些力建立了一个系统的框架。在这种方法中,人们通过将卡西米尔力与与光的反射和散射有关的基本量联系起来来计算卡西米尔力。这项工作将创造计算必要的反射和散射数据的新技术,然后将结果应用于广泛的Casimir力计算。用于分析光反射和散射的方法非常普遍,因此可能适用于物理和工程中的广泛问题。第二个研究方向集中在振子--场论模型中出现的非线性运动方程的极长寿命的、局域的、振荡的解--在宇宙膨胀和大爆炸之后的早期宇宙“再热”时期所起的作用。在这里,大规模的数值模拟将在理解混沌热背景中产生振荡的自组织行为方面发挥关键作用。这两个研究方向都将在其他科学和工程领域以及对学生的教育和培训方面产生重大而广泛的影响。卡西米尔项目将开发具有广泛潜在应用的新计算技术,而振子项目将推动高性能并行计算的现有边界。通过两个暑期研究项目,以及将这项研究的各个方面整合到米德尔伯里学院的本科课程中,这两个项目还将为学生提供重要的新机会,让他们学习基础物理以及广泛适用的分析和计算技能。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Noah Graham其他文献

Non-factive Understanding: A Statement and Defense
  • DOI:
    10.1007/s10838-019-09469-3
  • 发表时间:
    2019-09-01
  • 期刊:
  • 影响因子:
    0.900
  • 作者:
    Yannick Doyle;Spencer Egan;Noah Graham;Kareem Khalifa
  • 通讯作者:
    Kareem Khalifa
Correction to: Factors associated with late risks of breast cancer‑specific mortality in the SEER registry
  • DOI:
    10.1007/s10549-021-06268-7
  • 发表时间:
    2021-07-06
  • 期刊:
  • 影响因子:
    3.000
  • 作者:
    José P. Leone;Carlos T. Vallejo;Michael J. Hassett;Julieta Leone;Noah Graham;Nabihah Tayob;Rachel A. Freedman;Sara M. Tolaney;Bernardo A. Leone;Eric P. Winer;Nancy U. Lin
  • 通讯作者:
    Nancy U. Lin
Estimating long-term mortality in women with hormone receptor-positive breast cancer: The ‘ESTIMATE’ tool
  • DOI:
    10.1016/j.ejca.2022.06.029
  • 发表时间:
    2022-09-01
  • 期刊:
  • 影响因子:
  • 作者:
    José P. Leone;Noah Graham;Sara M. Tolaney;Bernardo A. Leone;Rachel A. Freedman;Michael J. Hassett;Julieta Leone;Carlos T. Vallejo;Eric P. Winer;Nancy U. Lin;Nabihah Tayob
  • 通讯作者:
    Nabihah Tayob
An electroweak oscillon.
弱电振荡。
  • DOI:
    10.1103/physrevlett.98.101801
  • 发表时间:
    2006
  • 期刊:
  • 影响因子:
    8.6
  • 作者:
    Noah Graham
  • 通讯作者:
    Noah Graham
Estimating mortality in women with triple-negative breast cancer: The ‘ESTIMATE triple-negative’ tool
  • DOI:
    10.1016/j.ejca.2023.05.018
  • 发表时间:
    2023-08-01
  • 期刊:
  • 影响因子:
  • 作者:
    José P. Leone;Noah Graham;Julieta Leone;Sara M. Tolaney;Bernardo A. Leone;Rachel A. Freedman;Michael J. Hassett;Carlos T. Vallejo;Eric P. Winer;Nancy U. Lin;Nabihah Tayob
  • 通讯作者:
    Nabihah Tayob

Noah Graham的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Noah Graham', 18)}}的其他基金

RUI: Quantum and Thermal Fluctuations in Monopoles, Spacetime, and Materials
RUI:单极子、时空和材料中的量子和热涨落
  • 批准号:
    2209582
  • 财政年份:
    2022
  • 资助金额:
    $ 12万
  • 项目类别:
    Standard Grant
RUI: Scattering Approach to Quantum Fluctuations: Casimir Forces, Curved Spacetime, and Solitons
RUI:量子涨落的散射方法:卡西米尔力、弯曲时空和孤子
  • 批准号:
    1820700
  • 财政年份:
    2018
  • 资助金额:
    $ 12万
  • 项目类别:
    Standard Grant
RUI: Casimir Forces From Scattering Theory
RUI:散射理论中的卡西米尔力
  • 批准号:
    1520293
  • 财政年份:
    2015
  • 资助金额:
    $ 12万
  • 项目类别:
    Standard Grant
RUI: Oscillons and Casimir Forces in Classical and Quantum Field Theory
RUI:经典和量子场论中的振荡和卡西米尔力
  • 批准号:
    0855426
  • 财政年份:
    2009
  • 资助金额:
    $ 12万
  • 项目类别:
    Standard Grant
RUI: Solitons and Oscillons in Quantum Field Theory
RUI:量子场论中的孤子和振荡
  • 批准号:
    0555338
  • 财政年份:
    2006
  • 资助金额:
    $ 12万
  • 项目类别:
    Continuing Grant

相似国自然基金

Lagrangian origin of geometric approaches to scattering amplitudes
  • 批准号:
    24ZR1450600
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
微波有源Scattering dark state粒子的理论及应用研究
  • 批准号:
    61701437
  • 批准年份:
    2017
  • 资助金额:
    28.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Development of a new EBSD analysis method combining dynamical scattering theory and machine learning
结合动态散射理论和机器学习开发新的 EBSD 分析方法
  • 批准号:
    23H01276
  • 财政年份:
    2023
  • 资助金额:
    $ 12万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Modern field and scattering theory for fundamental physics
基础物理的现代场和散射理论
  • 批准号:
    2887909
  • 财政年份:
    2023
  • 资助金额:
    $ 12万
  • 项目类别:
    Studentship
Postdoctoral Fellowship: MPS-Ascend: "Effective Field Theory Approach to Nuclear Structure for Next Generation of High-Energy Scattering Experiments"
博士后奖学金:MPS-Ascend:“下一代高能散射实验核结构的有效场论方法”
  • 批准号:
    2316701
  • 财政年份:
    2023
  • 资助金额:
    $ 12万
  • 项目类别:
    Fellowship Award
microscopic foundation of the shell model based on the scattering theory and the many-body perturbation theory
基于散射理论和多体摄动理论的壳模型微观基础
  • 批准号:
    23K03420
  • 财政年份:
    2023
  • 资助金额:
    $ 12万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Studies of multi-dimensional quantum walks by spectral scattering theory
光谱散射理论研究多维量子行走
  • 批准号:
    23K03224
  • 财政年份:
    2023
  • 资助金额:
    $ 12万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Geometric Scattering Theory, Resolvent Estimates, and Wave Asymptotics
几何散射理论、分辨估计和波渐近学
  • 批准号:
    DE230101165
  • 财政年份:
    2023
  • 资助金额:
    $ 12万
  • 项目类别:
    Discovery Early Career Researcher Award
Novel Sampling Methods for Electromagnetic Inverse Scattering Theory
电磁逆散射理论的新颖采样方法
  • 批准号:
    2208293
  • 财政年份:
    2022
  • 资助金额:
    $ 12万
  • 项目类别:
    Standard Grant
Electromagnetic Scattering from a Large Cavity in Heterogeneous Media: Theory and Algorithm
异质介质中大空腔的电磁散射:理论和算法
  • 批准号:
    567866-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 12万
  • 项目类别:
    Postdoctoral Fellowships
Geometric Scattering Theory, Resolvent Estimates, and Wave Asymptotics
几何散射理论、分辨估计和波渐近学
  • 批准号:
    2204322
  • 财政年份:
    2022
  • 资助金额:
    $ 12万
  • 项目类别:
    Continuing Grant
Radio Wave Scattering from Rough Surfaces -- Theory and Application to Maritime Remote Sensing with HF and other Radar Technologies
粗糙表面的无线电波散射——高频和其他雷达技术海上遥感的理论与应用
  • 批准号:
    RGPIN-2020-05003
  • 财政年份:
    2022
  • 资助金额:
    $ 12万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了