Representations of Finite Groups and Applications

有限群的表示及其应用

基本信息

  • 批准号:
    0600967
  • 负责人:
  • 金额:
    $ 13.29万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2006
  • 资助国家:
    美国
  • 起止时间:
    2006-06-01 至 2009-10-31
  • 项目状态:
    已结题

项目摘要

DMS-0600967Pham Huu TiepThis proposal focuses on several important problems in representation theory of finite groups and its applications. Many of these problems come up naturally in the group representation theory, and others are motivated by various applications, particularly in the theory of finite primitive permutation groups, Lie algebras, integral lattices and linear codes, combinatorics, curve theory, and quantum information processing. They tie together different areas of mathematics, with the main unifying ingredient being the representation theory.The investigator intends to continue his long-term project to classify cross characteristic representations of finite groups of Lie type of low dimension. The second main project centers around certain local-global problems, which should provide links between rationality properties of complex and Brauer characters of a given finite groupon the one hand and the structure of the group on the other hand. He then applies the results on these two projects to achieve significant progress in a number of applications, including the subgroup structure of finite simple groups, minimal polynomials of group elements in linear representations, integral lattices and grassmannian designs,derangements in primitive permutation groups and rational points of curves, mutually unbiased bases and quantum information processing.The main area of research in this proposal is therepresentation theory of finite groups. Groups in mathematics grew out of the notion of symmetry. The symmetries of an object in nature orscience are encoded by a group, and this group carries a lot ofimportant information about the structure of the object itself. Therepresentation theory allows one to study groups via their action on vector spaces which models the ways they arise in the real world. It has fascinated mathematicians for more than a century and had many important applications in physics and chemistry,particularly in quantum mechanics and in the theoryof elementary particles. Finite groups and their representations have already proved valuablein coding theory and cryptography, and are expected to continue to play an important role in themodern world of computers and digital communications. The investigator's research will lead toimportant advances in understanding the representation theory of finite groups and help achieve significant progress in a number of its applications.
DMS-0600967 Pham Huu Tiep这一建议集中于有限群表示论及其应用中的几个重要问题。这些问题中的许多自然出现在群表示论中,而其他问题则受到各种应用的启发,特别是在有限本原置换群、李代数、积分格和线性码、组合学、曲线理论和量子信息处理等理论中。他们联系在一起的不同领域的数学,与主要的统一成分是表示theory.The调查打算继续他的长期项目,以分类交叉特征表示有限群的李型低维。第二个主要项目围绕某些局部-全局问题,这应该提供一个给定的有限群的复和Brauer特征的合理性属性之间的联系,一方面和另一方面的组的结构。然后,他应用这两个项目的结果,以取得重大进展的一些应用,包括子群结构的有限简单的群体,最小多项式的群元素在线性表示,积分格和格拉斯曼设计,乱序在原始置换群和合理的点的曲线,相互无偏基和量子信息处理。该计划的主要研究领域是有限群的表示理论。数学中的群是从对称性的概念发展而来的。在自然界或科学中,物体的对称性是由一个群编码的,这个群携带了很多关于物体本身结构的重要信息。表示理论允许人们通过向量空间的行为来研究群体,向量空间模拟了它们在真实的世界中出现的方式。它已经吸引了数学家们超过一个世纪,并在物理和化学,特别是在量子力学和基本粒子理论中有许多重要的应用。有限群及其表示已经在编码理论和密码学中被证明是有价值的,并且预计将继续在现代计算机和数字通信世界中发挥重要作用。研究人员的研究将导致在理解有限群的表示理论方面取得重要进展,并有助于在其许多应用中取得重大进展。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Pham Tiep其他文献

Pham Tiep的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Pham Tiep', 18)}}的其他基金

Representations of Finite Groups and Applications
有限群的表示及其应用
  • 批准号:
    2200850
  • 财政年份:
    2022
  • 资助金额:
    $ 13.29万
  • 项目类别:
    Continuing Grant
Groups Representations and Applications: New Perspectives
群体表示和应用:新视角
  • 批准号:
    1907670
  • 财政年份:
    2019
  • 资助金额:
    $ 13.29万
  • 项目类别:
    Standard Grant
Group Representations and Applications
团体代表和申请
  • 批准号:
    1840702
  • 财政年份:
    2018
  • 资助金额:
    $ 13.29万
  • 项目类别:
    Continuing Grant
Representations of Finite Groups and Applications
有限群的表示及其应用
  • 批准号:
    1839351
  • 财政年份:
    2018
  • 资助金额:
    $ 13.29万
  • 项目类别:
    Continuing Grant
Group Representations and Applications
团体代表和申请
  • 批准号:
    1665014
  • 财政年份:
    2017
  • 资助金额:
    $ 13.29万
  • 项目类别:
    Continuing Grant
Finite Simple Groups: Thirty Years of the Atlas and Beyond
有限简单群:阿特拉斯三十年及以后
  • 批准号:
    1455798
  • 财政年份:
    2015
  • 资助金额:
    $ 13.29万
  • 项目类别:
    Standard Grant
Representations of Finite Groups and Applications
有限群的表示及其应用
  • 批准号:
    1201374
  • 财政年份:
    2012
  • 资助金额:
    $ 13.29万
  • 项目类别:
    Continuing Grant
Representations of Finite Groups and Applications
有限群的表示及其应用
  • 批准号:
    0964957
  • 财政年份:
    2009
  • 资助金额:
    $ 13.29万
  • 项目类别:
    Continuing Grant
Group Representations and Applications
团体代表和申请
  • 批准号:
    0901241
  • 财政年份:
    2009
  • 资助金额:
    $ 13.29万
  • 项目类别:
    Continuing Grant
Conference "Group Representations and Combinatorics"
会议“群表示和组合学”
  • 批准号:
    0735168
  • 财政年份:
    2007
  • 资助金额:
    $ 13.29万
  • 项目类别:
    Standard Grant

相似国自然基金

Finite-time Lyapunov 函数和耦合系统的稳定性分析
  • 批准号:
    11701533
  • 批准年份:
    2017
  • 资助金额:
    22.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Representations of Finite Groups and Applications
有限群的表示及其应用
  • 批准号:
    2200850
  • 财政年份:
    2022
  • 资助金额:
    $ 13.29万
  • 项目类别:
    Continuing Grant
Representations of finite reductive groups, character sheaves and theory of total positivity
有限约简群的表示、特征轮和总正性理论
  • 批准号:
    2153741
  • 财政年份:
    2022
  • 资助金额:
    $ 13.29万
  • 项目类别:
    Standard Grant
RUI: Galois Automorphisms and Local-Global Properties of Representations of Finite Groups
RUI:有限群表示的伽罗瓦自同构和局部全局性质
  • 批准号:
    2100912
  • 财政年份:
    2021
  • 资助金额:
    $ 13.29万
  • 项目类别:
    Standard Grant
Rank functions on triangulated categories, homotopy theory and representations of finite groups
三角范畴的秩函数、同伦理论和有限群的表示
  • 批准号:
    EP/T030771/1
  • 财政年份:
    2021
  • 资助金额:
    $ 13.29万
  • 项目类别:
    Research Grant
Summer School for Young Researchers on Representations of Finite Groups
有限群表示青年研究人员暑期学校
  • 批准号:
    2001077
  • 财政年份:
    2020
  • 资助金额:
    $ 13.29万
  • 项目类别:
    Standard Grant
Rank functions on triangulated categories, homotopy theory and representations of finite groups
三角范畴的秩函数、同伦理论和有限群的表示
  • 批准号:
    EP/T029455/1
  • 财政年份:
    2020
  • 资助金额:
    $ 13.29万
  • 项目类别:
    Research Grant
Construction of relatively cuspidal representations of finite groups of Lie type
有限李型群的相对尖头表示的构造
  • 批准号:
    540389-2019
  • 财政年份:
    2019
  • 资助金额:
    $ 13.29万
  • 项目类别:
    University Undergraduate Student Research Awards
Centralizer for the tensor representations of finite groups and diagram algebras
有限群和图代数张量表示的中心化器
  • 批准号:
    19K03398
  • 财政年份:
    2019
  • 资助金额:
    $ 13.29万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Cohomology and Representations of Finite and Algebraic Groups with Applications
有限代数群的上同调和表示及其应用
  • 批准号:
    1901595
  • 财政年份:
    2019
  • 资助金额:
    $ 13.29万
  • 项目类别:
    Continuing Grant
Representations of finite groups and Auslander-Reiten quivers
有限群和 Auslander-Reiten 箭袋的表示
  • 批准号:
    19K03451
  • 财政年份:
    2019
  • 资助金额:
    $ 13.29万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了