Representations of Finite Groups and Applications
有限群的表示及其应用
基本信息
- 批准号:1201374
- 负责人:
- 金额:$ 37.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2012
- 资助国家:美国
- 起止时间:2012-07-01 至 2018-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This proposal focuses on several important problems in representation theory of finite groups and its applications. Many of these problems come up naturally -- some long-standing and playing a central role -- in group representation theory, and others are motivated by various applications. The proposal ties together different areas of mathematics, such as finite groups and algebraic groups, finite permutation group theory, group cohomology, combinatorics, operator algebras, and algebraic geometry, with the main unifying ingredient being the representation theory. The PI will study several problems along the lines of the local-global principle, including the Alperin weight conjecture, Brauer's height zero conjecture, and some further conjectures concerning rationality and divisibility properties of complex and Brauer characters of finite groups. The PI will also continue his long-term project to classify modular representations of finite quasisimple groups of low dimension. He will then apply his results to achieve significant progress on a number of applications, including Waring-type problems for quasisimple groups, Aschbacher's conjecture on subgroup lattices, the Kollar-Larsen problem on exterior powers (with application in algebraic geometry), and the Guralnick-Holt conjecture on second cohomology groups for finite groups and their presentations, and representations of finite quasisimple groups with special properties (with application in the subgroup structure of finite simple groups).The main area of research in this proposal is group representation theory. The concept of a group in mathematics grew out ofthe notion of symmetry. The symmetries of an object in nature or science are encoded by a group, and this group carries a lot of important information about the structure of the object itself. The representation theory allows one to study groups via their actions on vector spaces which model the ways they arise in the real world. It has fascinated mathematicians for more than a century and has many important applications in physics and chemistry, particularly in quantum mechanics and in the theory of elementary particles. Finite groups and their representations have already proved valuable in coding theory and cryptography, and are expected to continue to play an important role in the modern world of computers and digital communications. The investigator's research will lead to important advances in understanding the representation theory of finite groups and help achieve significant progress in a number of its applications.
本文主要讨论有限群表示论及其应用中的几个重要问题。这些问题中的许多自然出现-一些长期存在并在群表示理论中发挥核心作用,而其他问题则是由各种应用引起的。该建议将不同的数学领域联系在一起,例如有限群和代数群,有限置换群理论,群上同调,组合学,算子代数和代数几何,主要统一成分是表示论。PI将沿着局部-全局原理研究沿着几个问题,包括Alperin重量猜想,Brauer的零高度猜想,以及一些关于有限群的复和Brauer特征的合理性和整除性的进一步假设。PI还将继续他的长期项目,分类模块表示有限quasisimple组的低维。然后,他将应用他的结果,以实现一些应用程序的重大进展,包括华林型问题的quasisimple集团,Aschbacher的猜想子群格,Kollar-Larsen问题的外部权力(在代数几何中的应用),以及有限群的二阶上同调群的Guralnick-Holt猜想及其表示,和具有特殊性质的有限拟单群的表示(在有限单群的子群结构中的应用)。本建议的主要研究领域是群表示理论。数学中群的概念是由对称性的概念发展而来的.在自然界或科学中,物体的对称性是由一个群编码的,这个群携带了许多关于物体本身结构的重要信息。表示论允许人们通过向量空间上的行为来研究群体,向量空间模拟了群体在真实的世界中出现的方式。它已经吸引了数学家超过世纪,并在物理和化学中有许多重要的应用,特别是在量子力学和基本粒子理论中。有限群及其表示在编码理论和密码学中已经被证明是有价值的,并且预计将继续在现代计算机和数字通信世界中发挥重要作用。研究人员的研究将导致理解有限群的表示理论的重要进展,并有助于在其应用中取得重大进展。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Pham Tiep其他文献
Pham Tiep的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Pham Tiep', 18)}}的其他基金
Representations of Finite Groups and Applications
有限群的表示及其应用
- 批准号:
2200850 - 财政年份:2022
- 资助金额:
$ 37.5万 - 项目类别:
Continuing Grant
Groups Representations and Applications: New Perspectives
群体表示和应用:新视角
- 批准号:
1907670 - 财政年份:2019
- 资助金额:
$ 37.5万 - 项目类别:
Standard Grant
Group Representations and Applications
团体代表和申请
- 批准号:
1840702 - 财政年份:2018
- 资助金额:
$ 37.5万 - 项目类别:
Continuing Grant
Representations of Finite Groups and Applications
有限群的表示及其应用
- 批准号:
1839351 - 财政年份:2018
- 资助金额:
$ 37.5万 - 项目类别:
Continuing Grant
Group Representations and Applications
团体代表和申请
- 批准号:
1665014 - 财政年份:2017
- 资助金额:
$ 37.5万 - 项目类别:
Continuing Grant
Finite Simple Groups: Thirty Years of the Atlas and Beyond
有限简单群:阿特拉斯三十年及以后
- 批准号:
1455798 - 财政年份:2015
- 资助金额:
$ 37.5万 - 项目类别:
Standard Grant
Representations of Finite Groups and Applications
有限群的表示及其应用
- 批准号:
0964957 - 财政年份:2009
- 资助金额:
$ 37.5万 - 项目类别:
Continuing Grant
Group Representations and Applications
团体代表和申请
- 批准号:
0901241 - 财政年份:2009
- 资助金额:
$ 37.5万 - 项目类别:
Continuing Grant
Conference "Group Representations and Combinatorics"
会议“群表示和组合学”
- 批准号:
0735168 - 财政年份:2007
- 资助金额:
$ 37.5万 - 项目类别:
Standard Grant
Representations of Finite Groups and Applications
有限群的表示及其应用
- 批准号:
0600967 - 财政年份:2006
- 资助金额:
$ 37.5万 - 项目类别:
Continuing Grant
相似国自然基金
Finite-time Lyapunov 函数和耦合系统的稳定性分析
- 批准号:11701533
- 批准年份:2017
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Representations of Finite Groups and Applications
有限群的表示及其应用
- 批准号:
2200850 - 财政年份:2022
- 资助金额:
$ 37.5万 - 项目类别:
Continuing Grant
Representations of finite reductive groups, character sheaves and theory of total positivity
有限约简群的表示、特征轮和总正性理论
- 批准号:
2153741 - 财政年份:2022
- 资助金额:
$ 37.5万 - 项目类别:
Standard Grant
RUI: Galois Automorphisms and Local-Global Properties of Representations of Finite Groups
RUI:有限群表示的伽罗瓦自同构和局部全局性质
- 批准号:
2100912 - 财政年份:2021
- 资助金额:
$ 37.5万 - 项目类别:
Standard Grant
Rank functions on triangulated categories, homotopy theory and representations of finite groups
三角范畴的秩函数、同伦理论和有限群的表示
- 批准号:
EP/T030771/1 - 财政年份:2021
- 资助金额:
$ 37.5万 - 项目类别:
Research Grant
Summer School for Young Researchers on Representations of Finite Groups
有限群表示青年研究人员暑期学校
- 批准号:
2001077 - 财政年份:2020
- 资助金额:
$ 37.5万 - 项目类别:
Standard Grant
Rank functions on triangulated categories, homotopy theory and representations of finite groups
三角范畴的秩函数、同伦理论和有限群的表示
- 批准号:
EP/T029455/1 - 财政年份:2020
- 资助金额:
$ 37.5万 - 项目类别:
Research Grant
Construction of relatively cuspidal representations of finite groups of Lie type
有限李型群的相对尖头表示的构造
- 批准号:
540389-2019 - 财政年份:2019
- 资助金额:
$ 37.5万 - 项目类别:
University Undergraduate Student Research Awards
Centralizer for the tensor representations of finite groups and diagram algebras
有限群和图代数张量表示的中心化器
- 批准号:
19K03398 - 财政年份:2019
- 资助金额:
$ 37.5万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Cohomology and Representations of Finite and Algebraic Groups with Applications
有限代数群的上同调和表示及其应用
- 批准号:
1901595 - 财政年份:2019
- 资助金额:
$ 37.5万 - 项目类别:
Continuing Grant
Representations of finite groups and Auslander-Reiten quivers
有限群和 Auslander-Reiten 箭袋的表示
- 批准号:
19K03451 - 财政年份:2019
- 资助金额:
$ 37.5万 - 项目类别:
Grant-in-Aid for Scientific Research (C)