Rigidity, Stability, Regularity, and Resolution Theorems in the Geometric Calculus of Variations
几何变分演算中的刚性、稳定性、正则性和解析定理
基本信息
- 批准号:2247544
- 负责人:
- 金额:$ 64.14万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-06-01 至 2028-05-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
This project investigates a set of mathematical models used in areas of Physics like General Relativity or surface tension theory. The focus is on aspects of these models that require the development of new mathematical tools and ideas. This kind of basic research advances Mathematics while keeping it grounded in the natural sciences. An important component of the project is research training, both at the graduate and the postdoctoral level.Soap films are classically modeled as two-dimensional surfaces, an approach that is correct in first approximation, but prevents the understanding of some of their physical properties such as bursting or bulging. The investigator has recently initiated the study of soap-films in the context of capillarity theory (soap films as three-dimensional regions with positive volume), and this project will focus on several new problems challenging the boundaries of GMT (Geometric Measure Theory) and the Calculus of Variations and aimed at understanding the interplay between the volume constraint and geometric features like collapsing and thickness. The investigator also intends to reformulate the soap film capillarity model in the context of diffused interface capillarity, thus adding a second length scale needed to further inquiry into collapsing phenomena. Diffused interface capillarity is also used to propose a PDE (Partial Differential Equations) approach to long standing questions concerning the volume-preserving mean curvature flow. PDE and GMT methods are central to the part of the project where the investigator will undertake a systematic analysis of a new kind of geometric regularity theorems (mesoscale flatness criteria) and their applications to the study of large-volume exterior isoperimetry and stable constant mean curvature foliations at infinity in General Relativity. Finally, novel approaches to natural generalizations of the Yamabe and Kazdan–Werner problems with boundary in Riemannian Geometry will also be studied as part of the project using methods from the theory of Optimal Mass Transport.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目研究了一套用于物理学领域的数学模型,如广义相对论或表面张力理论。重点是这些模型的方面,需要开发新的数学工具和思想。这种基础研究促进了数学的发展,同时使其扎根于自然科学。该项目的一个重要组成部分是研究生和博士后水平的研究培训。肥皂膜通常被建模为二维表面,这种方法在第一近似中是正确的,但无法理解它们的一些物理特性,如破裂或膨胀。研究人员最近在毛细理论的背景下开始了对肥皂膜的研究(肥皂膜作为具有正体积的三维区域),该项目将专注于挑战GMT(几何测量理论)和变分法边界的几个新问题,旨在了解体积约束和几何特征(如塌陷和厚度)之间的相互作用。研究人员还打算重新制定的肥皂膜毛细作用模型的扩散界面毛细作用的背景下,从而增加了第二个长度尺度需要进一步调查崩溃的现象。扩散界面毛细作用也被用来提出一个偏微分方程(PDE)的方法来解决长期存在的问题,关于保体积平均曲率流。PDE和GMT方法是该项目的核心部分,研究人员将系统分析一种新的几何规律性定理(中尺度平坦性准则)及其在广义相对论中研究大体积外部等周性和无穷大稳定常数平均曲率叶理的应用。最后,作为项目的一部分,还将利用最优质量传输理论的方法,研究Yamabe和Kazdan-Werner问题在黎曼几何中的自然推广的新方法。该奖项反映了NSF的法定使命,通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Francesco Maggi其他文献
Isoperimetric Residues and a Mesoscale Flatness Criterion for Hypersurfaces with Bounded Mean Curvature
- DOI:
10.1007/s00205-024-02039-y - 发表时间:
2024-09-19 - 期刊:
- 影响因子:2.400
- 作者:
Francesco Maggi;Michael Novack - 通讯作者:
Michael Novack
Cardiac contractility modulation by non-excitatory electrical currents. The new frontier for electrical therapy of heart failure.
非兴奋性电流调节心脏收缩力。
- DOI:
- 发表时间:
2004 - 期刊:
- 影响因子:0
- 作者:
G. Augello;V. Santinelli;G. Vicedomini;P. Mazzone;S. Gulletta;Francesco Maggi;Y. Mika;G. Chierchia;C. Pappone - 通讯作者:
C. Pappone
A remark on Serrin’s Theorem
- DOI:
10.1007/s00030-006-4018-8 - 发表时间:
2006-12-01 - 期刊:
- 影响因子:1.200
- 作者:
Nicola Fusco;Michele Gori;Francesco Maggi - 通讯作者:
Francesco Maggi
A New Approach to Counterexamples to L1 Estimates: Korn’s Inequality, Geometric Rigidity, and Regularity for Gradients of Separately Convex Functions
- DOI:
10.1007/s00205-004-0350-5 - 发表时间:
2004-12-03 - 期刊:
- 影响因子:2.400
- 作者:
Sergio Conti;Daniel Faraco;Francesco Maggi - 通讯作者:
Francesco Maggi
Rigidity and large volume residues in exterior isoperimetry for convex sets
凸集外等周问题中的刚性和大体积残差
- DOI:
10.1016/j.aim.2024.109833 - 发表时间:
2024-09-01 - 期刊:
- 影响因子:1.500
- 作者:
Nicola Fusco;Francesco Maggi;Massimiliano Morini;Michael Novack - 通讯作者:
Michael Novack
Francesco Maggi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Francesco Maggi', 18)}}的其他基金
Geometric Variational Problems for Surface Tension Driven Systems
表面张力驱动系统的几何变分问题
- 批准号:
2000034 - 财政年份:2020
- 资助金额:
$ 64.14万 - 项目类别:
Standard Grant
FRG: Collaborative Research: New Challenges in Geometric Measure Theory
FRG:协作研究:几何测度理论的新挑战
- 批准号:
1854344 - 财政年份:2019
- 资助金额:
$ 64.14万 - 项目类别:
Standard Grant
RTG: Analysis of Partial Differential Equations
RTG:偏微分方程分析
- 批准号:
1840314 - 财政年份:2019
- 资助金额:
$ 64.14万 - 项目类别:
Continuing Grant
Quantitative Analysis of Rigidity Theorems and Geometric Inequalities
刚性定理和几何不等式的定量分析
- 批准号:
1565354 - 财政年份:2017
- 资助金额:
$ 64.14万 - 项目类别:
Continuing Grant
FRG: Collaborative Research: Vectorial and geometric problems in the calculus of variations
FRG:协作研究:变分法中的矢量和几何问题
- 批准号:
1361122 - 财政年份:2014
- 资助金额:
$ 64.14万 - 项目类别:
Continuing Grant
Regularity and stability results in variational problems
规律性和稳定性导致变分问题
- 批准号:
1262411 - 财政年份:2013
- 资助金额:
$ 64.14万 - 项目类别:
Continuing Grant
Stability, regularity and symmetry issues in geometric variational problems
几何变分问题中的稳定性、正则性和对称性问题
- 批准号:
1265910 - 财政年份:2013
- 资助金额:
$ 64.14万 - 项目类别:
Continuing Grant
相似国自然基金
随机激励下多稳态系统的临界过渡识别及Basin Stability分析
- 批准号:11872305
- 批准年份:2018
- 资助金额:65.0 万元
- 项目类别:面上项目
相似海外基金
Regularity and Stability for Solutions of Quasilinear Wave Equations with Singularities
具有奇异性的拟线性波动方程解的正则性和稳定性
- 批准号:
2206218 - 财政年份:2022
- 资助金额:
$ 64.14万 - 项目类别:
Continuing Grant
CAREER: Existence, regularity, uniqueness and stability in anisotropic geometric variational problems
职业:各向异性几何变分问题的存在性、规律性、唯一性和稳定性
- 批准号:
2143124 - 财政年份:2022
- 资助金额:
$ 64.14万 - 项目类别:
Continuing Grant
Regularity and Stability Analysis of Free-Boundary Problems in Fluid Dynamics
流体动力学自由边界问题的规律性和稳定性分析
- 批准号:
2205710 - 财政年份:2022
- 资助金额:
$ 64.14万 - 项目类别:
Standard Grant
Stability and Regularity: From Analysis to Geometry
稳定性和规律性:从分析到几何
- 批准号:
2155054 - 财政年份:2022
- 资助金额:
$ 64.14万 - 项目类别:
Standard Grant
CAREER: New Mechanisms for Stability, Regularity and Long Time Dynamics of Partial Differential Equations
职业:偏微分方程稳定性、正则性和长期动力学的新机制
- 批准号:
1945179 - 财政年份:2020
- 资助金额:
$ 64.14万 - 项目类别:
Continuing Grant
Regularity, Stability, and Uniqueness Questions for Certain Non-Linear Partial Differential Equations
某些非线性偏微分方程的正则性、稳定性和唯一性问题
- 批准号:
1956092 - 财政年份:2020
- 资助金额:
$ 64.14万 - 项目类别:
Standard Grant
Regularity, Stability, and Turbulence in Fluid Flows
流体流动的规律性、稳定性和湍流
- 批准号:
1907981 - 财政年份:2019
- 资助金额:
$ 64.14万 - 项目类别:
Standard Grant
Regularity and stability results in variational problems
规律性和稳定性导致变分问题
- 批准号:
1262411 - 财政年份:2013
- 资助金额:
$ 64.14万 - 项目类别:
Continuing Grant
Stability, regularity and symmetry issues in geometric variational problems
几何变分问题中的稳定性、正则性和对称性问题
- 批准号:
1265910 - 财政年份:2013
- 资助金额:
$ 64.14万 - 项目类别:
Continuing Grant
Regularity, stability, and singular limits in fluid dynamics
流体动力学的规律性、稳定性和奇异极限
- 批准号:
1348193 - 财政年份:2013
- 资助金额:
$ 64.14万 - 项目类别:
Standard Grant