The geometry of partial differential equations
偏微分方程的几何
基本信息
- 批准号:0604195
- 负责人:
- 金额:$ 55.9万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2006
- 资助国家:美国
- 起止时间:2006-07-01 至 2008-10-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
AbstractAward: DMS-0604195Principal Investigator: Robert L. BryantBryant will apply techniques of exterior differential systems anddifferential invariants to problems of current interest ingeometry, economics, and physics. In soliton flows, two problemswill be studied: Characterizing the complete Ricci solitons interms of extra equations that they must satisfy, such as havinghigher multiplicity of eigenvalues of the Ricci tensor or its(symmetrized) covariant derivatives and exploring a flow forCR-nondegenerate hypersurfaces in complex manifolds withtrivialized canonical bundle. In minimal submanifolds, Bryantwill work on constructing and understanding calibratedsubmanifolds in Riemannian manifolds of special holonomy. Inalmost-complex geometry, Bryant will develop a theory of almostcomplex 6-manifolds by studying the functionals on the space ofalmost complex structures on a given 6-manifold and the`quasi-integrable' class of almost complex structures, which hasmany of the good bundle-theoretic properties of the integrablecase but is considerably more flexible. It has a good theory ofHermitian-Yang-Mills connections, at least locally, and one mayhope to define, study, and apply the associated moduli spaces.Bryant will also study the minimizing properties ofpseudo-holomorphic curves in almost complex manifolds. InFinsler geometry, Bryant will develop the theory of Finslermanifolds with constant flag curvature, constructing newexamples, understanding the properties of their geodesic flows,and pursuing relations with twistor theory and exotic holonomy.In smaller projects, Bryant will continue to study the problem ofHessian representability of metrics and its close relations withintegrable systems and will also begin developing andgeneralizing the convex Darboux theory introduced by Ekeland andNirenberg for applications to econometric models. (The methodsof exterior differential systems are particularly suited to thislatter problem and Bryant expects some interesting interactionwith econometricians along the way.)Bryant will continue to develop geometric approaches to problemsarising in analysis, physics, economics, and biology. Many ofthe important advances in the use of mathematics in the scienceshave depended on developing a geometric understanding of thoseproblems, i.e., an understanding that focusses on intrinsicaspects that are not tied to arbitrarily chosen coordinates.(The most famous example of this is Einstein's general theory ofrelativity, which he found by re-interpreting gravitation as`curvature of space', rather than as a force whose complicatedexpression in observer coordinates was largely irrelevant. Morerecently, the development of string theory and M-theory has alsoresulted in geometric formulations of physics.) Geometricformulations often lead to degeneracies in the mathematics thatcan be treated by differential systems and their invariants(nonstandard tools that Bryant and his coworkers aresystematically developing), and Bryant is exploring applicationsof these ideas to new areas.
摘要奖:DMS-0604195主要研究者:Robert L. BryantBryant将应用外部微分系统和微分不变量的技术来解决当前感兴趣的几何学、经济学和物理学问题。 在孤子流中,我们将研究两个问题:用Ricci张量或其(对称化的)协变导数的特征值的重数更大的额外方程来刻画完备Ricci孤子,以及探索具有平凡化正则丛的复流形中CR-非退化超曲面的流。 在极小子流形中,Bryanson致力于构造和理解特殊完整黎曼流形中的校准子流形。 在几乎复杂的几何,布莱恩特将制定一个理论almostcomplex 6-流形通过研究空间上的泛函几乎复杂的结构在一个给定的6-流形和“准可积”类几乎复杂的结构,其中有许多良好的斗争理论性质的integrablecase,但相当灵活。 它有一个很好的理论厄米-杨-米尔斯连接,至少在局部,人们可能希望定义,研究和应用相关的模空间。布莱恩特还将研究极小化性质的伪全纯曲线在几乎复杂的流形。 在芬斯勒几何,布莱恩特将发展芬斯勒流形的理论与恒定的旗帜曲率,构建新的例子,了解其测地线流的性质,并追求与扭量理论和异国holonomy的关系。在较小的项目,Bryant将继续研究度量的Hessian可表示性问题及其与可积系统的密切关系,还将开始发展和推广由Ekeland和Nirenberg,计量经济学模型的应用。 (The外微分系统的方法特别适合于后一个问题,布莱恩特希望在此过程中与计量经济学家进行一些有趣的互动。)布莱恩特将继续发展几何方法来解决分析、物理、经济和生物学中出现的问题。 许多重要的进展,在使用数学的科学依赖于发展的几何理解这些问题,即,一种专注于内在方面的理解,这种理解不受任意选择的坐标的约束。(The这方面最著名的例子是爱因斯坦的广义相对论,他通过将引力重新解释为“空间曲率”而不是一种在观察者坐标中复杂表达基本上无关紧要的力来发现这一理论。 最近,弦理论和M理论的发展也导致了物理学的几何表述。) 几何公式通常会导致数学中的退化,这些退化可以通过微分系统及其不变量(Bryant和他的同事系统开发的非标准工具)来处理,Bryant正在探索这些想法在新领域的应用。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Robert Bryant其他文献
The Atlanta Phoenix Project: Applications of Gamification for Online Civic Engagement
亚特兰大凤凰城项目:游戏化在在线公民参与中的应用
- DOI:
- 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
Robert Bryant - 通讯作者:
Robert Bryant
Curvature homogeneous hypersurfaces in space forms
空间形式中的曲率齐次超曲面
- DOI:
10.1016/j.aim.2025.110338 - 发表时间:
2025-07-01 - 期刊:
- 影响因子:1.500
- 作者:
Robert Bryant;Luis Florit;Wolfgang Ziller - 通讯作者:
Wolfgang Ziller
Robert Bryant的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Robert Bryant', 18)}}的其他基金
The geometry of partial differential equations and applications
偏微分方程的几何及其应用
- 批准号:
1359583 - 财政年份:2013
- 资助金额:
$ 55.9万 - 项目类别:
Continuing Grant
The geometry of partial differential equations and applications
偏微分方程的几何及其应用
- 批准号:
1105868 - 财政年份:2011
- 资助金额:
$ 55.9万 - 项目类别:
Continuing Grant
DO4models- Dust Observations for models: Linking a new dust source-area data set to improved physically-based dust emission schemes in climate models
DO4models-模型的粉尘观测:将新的粉尘源区域数据集与改进的气候模型中基于物理的粉尘排放方案联系起来
- 批准号:
NE/H023410/1 - 财政年份:2011
- 资助金额:
$ 55.9万 - 项目类别:
Research Grant
MSRI-UP: MSRI's Undergraduate Program
MSRI-UP:MSRI 的本科课程
- 批准号:
0754872 - 财政年份:2008
- 资助金额:
$ 55.9万 - 项目类别:
Standard Grant
The geometry of partial differential equations
偏微分方程的几何
- 批准号:
0848131 - 财政年份:2008
- 资助金额:
$ 55.9万 - 项目类别:
Continuing Grant
Workshop on the Mathematics of Visual Analysis
视觉分析数学研讨会
- 批准号:
0639579 - 财政年份:2006
- 资助金额:
$ 55.9万 - 项目类别:
Standard Grant
Mathematical Sciences Research Institute 5 Year Proposal
数学科学研究所五年计划
- 批准号:
0441170 - 财政年份:2005
- 资助金额:
$ 55.9万 - 项目类别:
Continuing Grant
The Differential Geometry of Partial Differential Equations
偏微分方程的微分几何
- 批准号:
0103884 - 财政年份:2001
- 资助金额:
$ 55.9万 - 项目类别:
Continuing Grant
The Differential Geometry of Partial Differential Equations
偏微分方程的微分几何
- 批准号:
9870164 - 财政年份:1998
- 资助金额:
$ 55.9万 - 项目类别:
Continuing Grant
Mathematical Sciences: The Differential Geometry of PartialDifferential Equations
数学科学:偏微分方程的微分几何
- 批准号:
9505125 - 财政年份:1995
- 资助金额:
$ 55.9万 - 项目类别:
Continuing Grant
相似国自然基金
Graphon mean field games with partial observation and application to failure detection in distributed systems
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
硝态氮氨化菌群富集及其与部分反硝化协同的机制研究
- 批准号:51808045
- 批准年份:2018
- 资助金额:26.0 万元
- 项目类别:青年科学基金项目
Partial EIV 模型参数估计理论及其在测量数据处理中的应用研究
- 批准号:41664001
- 批准年份:2016
- 资助金额:40.0 万元
- 项目类别:地区科学基金项目
Partial Spread Bent函数与Bent-Negabent函数的构造及密码学性质研究
- 批准号:61402377
- 批准年份:2014
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
图的l1-嵌入性以及partial立方图和多重median图的刻画
- 批准号:11261019
- 批准年份:2012
- 资助金额:45.0 万元
- 项目类别:地区科学基金项目
微分动力系统的测度和熵
- 批准号:11101447
- 批准年份:2011
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
部分双曲系统的遍历性研究
- 批准号:11001284
- 批准年份:2010
- 资助金额:16.0 万元
- 项目类别:青年科学基金项目
低温绝缘材料局部放电特性与电老化机理的研究
- 批准号:50577038
- 批准年份:2005
- 资助金额:27.0 万元
- 项目类别:面上项目
相似海外基金
(Semi)algebraic Geometry in Schrödinger Operators and Nonlinear Hamiltonian Partial Differential Equations
薛定谔算子和非线性哈密顿偏微分方程中的(半)代数几何
- 批准号:
2246031 - 财政年份:2023
- 资助金额:
$ 55.9万 - 项目类别:
Standard Grant
Analysis and Geometry of Random Fields Related to Stochastic Partial Differential Equations and Random Matrices
与随机偏微分方程和随机矩阵相关的随机场的分析和几何
- 批准号:
2153846 - 财政年份:2022
- 资助金额:
$ 55.9万 - 项目类别:
Continuing Grant
Geometric Partial Differential Equations and Complex Geometry
几何偏微分方程和复几何
- 批准号:
2231783 - 财政年份:2022
- 资助金额:
$ 55.9万 - 项目类别:
Continuing Grant
Problems in Complex Geometry, Partial Differential Equations, and Mathematical Physics
复杂几何、偏微分方程和数学物理问题
- 批准号:
2203273 - 财政年份:2022
- 资助金额:
$ 55.9万 - 项目类别:
Continuing Grant
Applications of Quasiconformal Geometry and Partial Differential Equations
拟共形几何与偏微分方程的应用
- 批准号:
2141297 - 财政年份:2021
- 资助金额:
$ 55.9万 - 项目类别:
Standard Grant
Nonlinear Partial Differential Equations and Geometry
非线性偏微分方程和几何
- 批准号:
2005311 - 财政年份:2020
- 资助金额:
$ 55.9万 - 项目类别:
Standard Grant
Differential Geometry and Partial Differential Equations
微分几何和偏微分方程
- 批准号:
2005431 - 财政年份:2020
- 资助金额:
$ 55.9万 - 项目类别:
Continuing Grant
Applications of Quasiconformal Geometry and Partial Differential Equations
拟共形几何与偏微分方程的应用
- 批准号:
1955992 - 财政年份:2020
- 资助金额:
$ 55.9万 - 项目类别:
Standard Grant
Inverse Problems in Partial Differential Equations and Geometry
偏微分方程和几何中的反问题
- 批准号:
1900475 - 财政年份:2019
- 资助金额:
$ 55.9万 - 项目类别:
Continuing Grant
Nonlinear partial differential equations of mixed elliptic-hyperbolic type in geometry and related areas
几何及相关领域混合椭圆双曲型非线性偏微分方程
- 批准号:
2271985 - 财政年份:2019
- 资助金额:
$ 55.9万 - 项目类别:
Studentship