The geometry of partial differential equations and applications
偏微分方程的几何及其应用
基本信息
- 批准号:1359583
- 负责人:
- 金额:$ 13.29万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2013
- 资助国家:美国
- 起止时间:2013-07-01 至 2015-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Robert Bryant (the PI) plans to apply the theory of exterior differential systems, the method of equivalence, and methods from the calculus of variations to study a variety of problems in differential geometry, mathematical physics, and econometrics. Among the specific problems and areas that he intends to investigate are these: In affine geometry, he will investigate the new integrable systems that he has discovered while working on the affine Bonnet problem. In Riemannian geometry, he will continue his work on classifying Riemannian submersions from space forms and other symmetric spaces, work on classifying special metrics (such as solitons and metrics with restrictions on the algebraic type of the curvature tensor), and on understanding the integrable systems associated with special holonomy metrics of higher cohomogeneity. In Finsler geometry, Bryant will continue to develop the theory of Finsler manifolds with constant flag curvature, both in constructing new examples and in understanding the properties of their geodesic flows; the relations with twistor theory and exotic holonomy structures will be especially examined. In complex geometry, Bryant will continue his work on characterizing the rational normal structures induced on the moduli space of rational contact curves in holomorphic contact $3$-folds, with the goal of understanding how these are connected to integrable systems and their curvature properties. All these (and other related projects) will produce results that are useful in themselves, but they will also motivate the development of new techniques in exterior differential systems and the method of equivalence and will facilitate the training of graduate students and postdoctoral fellows in these techniques.Many of the important advances in our ability to use mathematics in physics and other sciences have depended on developing a geometric understanding of those problems, i.e., an understanding that focuses only on the aspects of those problems that are not tied to specific (often, arbitrarily chosen) coordinate systems. For example, Einstein's formulation of General Relativity came only after he was able to employ the coordinate-free concepts of Riemannian geometry effectively to isolate and describe the essential nature of gravity as the curvature of space-time. However, coordinate-free formulations of a problem often reveal degeneracies that need to be approached by nonstandard tools, such as the theory of differential systems. Bryant's plan of research, which applies the coordinate-free theories of differential systems and the method of equivalence, will lead to a more fundamental, geometric understanding of a number of problems that arise in the study of surfaces in space, the special structures that arise because of extra or hidden symmetries, and the nature of curvature itself in a number of geometric contexts.
罗伯特·布莱恩特(PI)计划应用外微分系统理论,等价方法和变分法来研究微分几何,数学物理和计量经济学中的各种问题。 在具体的问题和领域,他打算调查的是这些:在仿射几何,他将调查新的可积系统,他发现,而工作的仿射Bonnet问题。 在黎曼几何,他将继续他的工作分类黎曼淹没从空间形式和其他对称空间,工作分类特殊度量(如孤子和度量的限制代数类型的曲率张量),并了解可积系统与特殊holonomy度量较高的cohomogeneity。在芬斯勒几何,布莱恩特将继续发展芬斯勒流形的理论与常旗曲率,无论是在建设新的例子,并在了解其测地流的性质;与扭量理论和异国情调的holonomy结构的关系将特别审查。 在复杂的几何中,布莱恩特将继续他的工作,描述全纯接触$3$-folds中有理接触曲线的模空间上诱导的有理正规结构,目的是了解这些如何与可积系统及其曲率性质相联系。 所有这些(以及其他相关项目)将产生本身有用的结果,但它们也将促进外微分系统和等效方法的新技术的发展,并将促进研究生和博士后研究员在这些技术方面的培训。我们在物理学和其他科学中使用数学的能力的许多重要进展都依赖于发展几何理解这些问题,即,一种理解,只关注那些问题的各个方面,而不依赖于特定的(通常是任意选择的)坐标系。 例如,爱因斯坦的广义相对论公式是在他能够有效地使用黎曼几何的无坐标概念来分离和描述引力的本质为时空曲率之后才出现的。 然而,一个问题的无坐标公式往往揭示退化,需要处理的非标准工具,如微分系统理论。 布莱恩特的研究计划,适用于坐标自由理论的微分系统和方法的等效性,将导致一个更根本的,几何理解的一些问题,出现在研究中的表面在空间中,特殊的结构,出现因为额外的或隐藏的对称性,和性质的曲率本身在一些几何背景。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Robert Bryant其他文献
The Atlanta Phoenix Project: Applications of Gamification for Online Civic Engagement
亚特兰大凤凰城项目:游戏化在在线公民参与中的应用
- DOI:
- 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
Robert Bryant - 通讯作者:
Robert Bryant
Curvature homogeneous hypersurfaces in space forms
空间形式中的曲率齐次超曲面
- DOI:
10.1016/j.aim.2025.110338 - 发表时间:
2025-07-01 - 期刊:
- 影响因子:1.500
- 作者:
Robert Bryant;Luis Florit;Wolfgang Ziller - 通讯作者:
Wolfgang Ziller
Robert Bryant的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Robert Bryant', 18)}}的其他基金
The geometry of partial differential equations and applications
偏微分方程的几何及其应用
- 批准号:
1105868 - 财政年份:2011
- 资助金额:
$ 13.29万 - 项目类别:
Continuing Grant
DO4models- Dust Observations for models: Linking a new dust source-area data set to improved physically-based dust emission schemes in climate models
DO4models-模型的粉尘观测:将新的粉尘源区域数据集与改进的气候模型中基于物理的粉尘排放方案联系起来
- 批准号:
NE/H023410/1 - 财政年份:2011
- 资助金额:
$ 13.29万 - 项目类别:
Research Grant
MSRI-UP: MSRI's Undergraduate Program
MSRI-UP:MSRI 的本科课程
- 批准号:
0754872 - 财政年份:2008
- 资助金额:
$ 13.29万 - 项目类别:
Standard Grant
The geometry of partial differential equations
偏微分方程的几何
- 批准号:
0848131 - 财政年份:2008
- 资助金额:
$ 13.29万 - 项目类别:
Continuing Grant
The geometry of partial differential equations
偏微分方程的几何
- 批准号:
0604195 - 财政年份:2006
- 资助金额:
$ 13.29万 - 项目类别:
Continuing Grant
Workshop on the Mathematics of Visual Analysis
视觉分析数学研讨会
- 批准号:
0639579 - 财政年份:2006
- 资助金额:
$ 13.29万 - 项目类别:
Standard Grant
Mathematical Sciences Research Institute 5 Year Proposal
数学科学研究所五年计划
- 批准号:
0441170 - 财政年份:2005
- 资助金额:
$ 13.29万 - 项目类别:
Continuing Grant
The Differential Geometry of Partial Differential Equations
偏微分方程的微分几何
- 批准号:
0103884 - 财政年份:2001
- 资助金额:
$ 13.29万 - 项目类别:
Continuing Grant
The Differential Geometry of Partial Differential Equations
偏微分方程的微分几何
- 批准号:
9870164 - 财政年份:1998
- 资助金额:
$ 13.29万 - 项目类别:
Continuing Grant
Mathematical Sciences: The Differential Geometry of PartialDifferential Equations
数学科学:偏微分方程的微分几何
- 批准号:
9505125 - 财政年份:1995
- 资助金额:
$ 13.29万 - 项目类别:
Continuing Grant
相似国自然基金
Graphon mean field games with partial observation and application to failure detection in distributed systems
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
硝态氮氨化菌群富集及其与部分反硝化协同的机制研究
- 批准号:51808045
- 批准年份:2018
- 资助金额:26.0 万元
- 项目类别:青年科学基金项目
Partial EIV 模型参数估计理论及其在测量数据处理中的应用研究
- 批准号:41664001
- 批准年份:2016
- 资助金额:40.0 万元
- 项目类别:地区科学基金项目
Partial Spread Bent函数与Bent-Negabent函数的构造及密码学性质研究
- 批准号:61402377
- 批准年份:2014
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
图的l1-嵌入性以及partial立方图和多重median图的刻画
- 批准号:11261019
- 批准年份:2012
- 资助金额:45.0 万元
- 项目类别:地区科学基金项目
微分动力系统的测度和熵
- 批准号:11101447
- 批准年份:2011
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
部分双曲系统的遍历性研究
- 批准号:11001284
- 批准年份:2010
- 资助金额:16.0 万元
- 项目类别:青年科学基金项目
低温绝缘材料局部放电特性与电老化机理的研究
- 批准号:50577038
- 批准年份:2005
- 资助金额:27.0 万元
- 项目类别:面上项目
相似海外基金
(Semi)algebraic Geometry in Schrödinger Operators and Nonlinear Hamiltonian Partial Differential Equations
薛定谔算子和非线性哈密顿偏微分方程中的(半)代数几何
- 批准号:
2246031 - 财政年份:2023
- 资助金额:
$ 13.29万 - 项目类别:
Standard Grant
Analysis and Geometry of Random Fields Related to Stochastic Partial Differential Equations and Random Matrices
与随机偏微分方程和随机矩阵相关的随机场的分析和几何
- 批准号:
2153846 - 财政年份:2022
- 资助金额:
$ 13.29万 - 项目类别:
Continuing Grant
Geometric Partial Differential Equations and Complex Geometry
几何偏微分方程和复几何
- 批准号:
2231783 - 财政年份:2022
- 资助金额:
$ 13.29万 - 项目类别:
Continuing Grant
Problems in Complex Geometry, Partial Differential Equations, and Mathematical Physics
复杂几何、偏微分方程和数学物理问题
- 批准号:
2203273 - 财政年份:2022
- 资助金额:
$ 13.29万 - 项目类别:
Continuing Grant
Applications of Quasiconformal Geometry and Partial Differential Equations
拟共形几何与偏微分方程的应用
- 批准号:
2141297 - 财政年份:2021
- 资助金额:
$ 13.29万 - 项目类别:
Standard Grant
Nonlinear Partial Differential Equations and Geometry
非线性偏微分方程和几何
- 批准号:
2005311 - 财政年份:2020
- 资助金额:
$ 13.29万 - 项目类别:
Standard Grant
Differential Geometry and Partial Differential Equations
微分几何和偏微分方程
- 批准号:
2005431 - 财政年份:2020
- 资助金额:
$ 13.29万 - 项目类别:
Continuing Grant
Applications of Quasiconformal Geometry and Partial Differential Equations
拟共形几何与偏微分方程的应用
- 批准号:
1955992 - 财政年份:2020
- 资助金额:
$ 13.29万 - 项目类别:
Standard Grant
Inverse Problems in Partial Differential Equations and Geometry
偏微分方程和几何中的反问题
- 批准号:
1900475 - 财政年份:2019
- 资助金额:
$ 13.29万 - 项目类别:
Continuing Grant
Nonlinear partial differential equations of mixed elliptic-hyperbolic type in geometry and related areas
几何及相关领域混合椭圆双曲型非线性偏微分方程
- 批准号:
2271985 - 财政年份:2019
- 资助金额:
$ 13.29万 - 项目类别:
Studentship