Topics at the Intersection of Geometry, Topology and Group Theory

几何、拓扑和群论交叉的主题

基本信息

  • 批准号:
    0604633
  • 负责人:
  • 金额:
    $ 33.36万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2006
  • 资助国家:
    美国
  • 起止时间:
    2006-07-01 至 2012-06-30
  • 项目状态:
    已结题

项目摘要

ABSTRACT FOR NSF PROPOSAL 0604633There are three main components to this project. First, Farb will continue to investigate mapping class groups and the moduli space of Riemann surfaces. This topic lies at the intersection of many areas of mathematics, from algebraic geometry to low-dimensional topology to string theory to geometric group theory. Farb will continue to apply methods from discrete subgroups of Lie groups in order to understand these objects, especially the "Torelli group", which is a part of the oldest but least understood part of the theory. Symmetry is a core idea in mathematics. Farb will continue his work with S. Weinberger on the broad program of classifying all spaces (that is Riemannian manifolds) with symmetry. The ideas used so far in this work have included the theories of harmonic maps, large-scale geometry, and transformation groups. In a third project, Farb will continue his work with C. Hruska on bringing together techniques and ideas from geometric group theory with those from discrete subgroups of Lie groups in order to build the theory of lattices in automorphism groups of 2-complexes. This is a 2-dimensional extension of Bass-Lubotzky's theory of tree lattices, where wild new phenomena can occur. Throughout each of the projects just described, Farb will continue to work with and mentor many young students and researchers.
NSF提案摘要这个项目由三个主要部分组成。首先,Farb将继续研究映射类群和黎曼曲面的模空间。这个主题涉及数学的许多领域,从代数几何到低维拓扑学,再到弦理论和几何群论。法布将继续应用李群的离散子群的方法来理解这些物体,特别是“Torelli群”,它是理论中最古老但最不被理解的部分的一部分。对称性是数学中的核心概念。Farb将继续他与S.Weinberger在对所有空间(即黎曼流形)进行对称分类的广泛计划上的工作。到目前为止,这项工作中使用的思想包括调和映射理论、大规模几何理论和变换群理论。在第三个项目中,Farb将继续他与C.Hruska的工作,将几何群论的技术和思想与李群的离散子群的技术和思想结合起来,以建立2-复形的自同构群中的格理论。这是Bass-Lubotzky的树格理论的二维扩展,其中可能会出现疯狂的新现象。在刚刚描述的每个项目中,Farb将继续与许多年轻的学生和研究人员合作并提供指导。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Benson Farb其他文献

Every mapping class group is generated by 3 elements of finite order
每个映射类组由3个有限阶元素生成
  • DOI:
  • 发表时间:
    2003
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Tara E. Brendle;Benson Farb
  • 通讯作者:
    Benson Farb
Combing Lattices in Semisimple Lie Groups
组合半单李群中的格
  • DOI:
    10.1515/9783110908978.57
  • 发表时间:
    1995
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Benson Farb
  • 通讯作者:
    Benson Farb
Filling-invariants at infinity for manifolds of nonpositive curvature
非正曲率流形的无穷远填充不变量
  • DOI:
  • 发表时间:
    1995
  • 期刊:
  • 影响因子:
    0
  • 作者:
    N. Brady;Benson Farb
  • 通讯作者:
    Benson Farb
Geometry of the Wiman–Edge pencil and the Wiman curve
维曼边缘铅笔的几何形状和维曼曲线
  • DOI:
    10.1007/s10711-020-00517-7
  • 发表时间:
    2019-12
  • 期刊:
  • 影响因子:
    0.5
  • 作者:
    Igor Dolgachev;Benson Farb;Eduard Looijenga
  • 通讯作者:
    Eduard Looijenga
Some problems on mapping class groups and moduli space
  • DOI:
    10.1090/pspum/074/2264130
  • 发表时间:
    2006-06
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Benson Farb
  • 通讯作者:
    Benson Farb

Benson Farb的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Benson Farb', 18)}}的其他基金

New Directions in Geometric Group Theory and Topology
几何群论和拓扑学的新方向
  • 批准号:
    2203355
  • 财政年份:
    2022
  • 资助金额:
    $ 33.36万
  • 项目类别:
    Continuing Grant
Braids, Resolvent Degree and Hilbert's 13th Problem
辫子、解决度和希尔伯特第十三问题
  • 批准号:
    1811772
  • 财政年份:
    2018
  • 资助金额:
    $ 33.36万
  • 项目类别:
    Continuing Grant
Stability and Instability in Topology
拓扑的稳定性和不稳定性
  • 批准号:
    1406209
  • 财政年份:
    2014
  • 资助金额:
    $ 33.36万
  • 项目类别:
    Continuing Grant
Representation Theory and Homological Stability in Topology
拓扑中的表示论和同调稳定性
  • 批准号:
    1105643
  • 财政年份:
    2011
  • 资助金额:
    $ 33.36万
  • 项目类别:
    Continuing Grant
Geometry and Dynamics of the group of Hamiltonian diffeomorphisms of a surface
表面哈密顿微分同胚群的几何与动力学
  • 批准号:
    0905911
  • 财政年份:
    2009
  • 资助金额:
    $ 33.36万
  • 项目类别:
    Standard Grant
Geometry, Rigidity, and Group Actions
几何、刚度和群作用
  • 批准号:
    0734851
  • 财政年份:
    2007
  • 资助金额:
    $ 33.36万
  • 项目类别:
    Standard Grant
CAREER: Topics at the Intersection of Geometry, Topology and Group Theory
职业:几何、拓扑和群论交叉的主题
  • 批准号:
    9984815
  • 财政年份:
    2000
  • 资助金额:
    $ 33.36万
  • 项目类别:
    Standard Grant
Large Scale Geometry, Topology, and Rigidity in Geometric Group Theory
几何群论中的大尺度几何、拓扑和刚性
  • 批准号:
    9704640
  • 财政年份:
    1997
  • 资助金额:
    $ 33.36万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Postdoctoral Research Fellowship
数学科学:博士后研究奖学金
  • 批准号:
    9407555
  • 财政年份:
    1994
  • 资助金额:
    $ 33.36万
  • 项目类别:
    Fellowship Award

相似海外基金

Intersection Theory and Height Pairings in Arithmetic Geometry
算术几何中的交集理论和高度配对
  • 批准号:
    2101787
  • 财政年份:
    2021
  • 资助金额:
    $ 33.36万
  • 项目类别:
    Continuing Grant
Stochastic Analysis and Investigations at the Intersection of Analysis, Geometry, and Probability
分析、几何和概率交叉点的随机分析和调查
  • 批准号:
    519564-2018
  • 财政年份:
    2020
  • 资助金额:
    $ 33.36万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
Stochastic Analysis and Investigations at the Intersection of Analysis, Geometry, and Probability
分析、几何和概率交叉点的随机分析和调查
  • 批准号:
    519564-2018
  • 财政年份:
    2019
  • 资助金额:
    $ 33.36万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
Shimura varieties - intersection theory, rigid geometry, stratifications and p-adic modular forms
Shimura 品种 - 相交理论、刚性几何、分层和 p-adic 模形式
  • 批准号:
    RGPIN-2014-05614
  • 财政年份:
    2018
  • 资助金额:
    $ 33.36万
  • 项目类别:
    Discovery Grants Program - Individual
Stochastic Analysis and Investigations at the Intersection of Analysis, Geometry, and Probability
分析、几何和概率交叉点的随机分析和调查
  • 批准号:
    519564-2018
  • 财政年份:
    2018
  • 资助金额:
    $ 33.36万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
Shimura varieties - intersection theory, rigid geometry, stratifications and p-adic modular forms
Shimura 品种 - 相交理论、刚性几何、分层和 p-adic 模形式
  • 批准号:
    RGPIN-2014-05614
  • 财政年份:
    2017
  • 资助金额:
    $ 33.36万
  • 项目类别:
    Discovery Grants Program - Individual
Shimura varieties - intersection theory, rigid geometry, stratifications and p-adic modular forms
Shimura 品种 - 相交理论、刚性几何、分层和 p-adic 模形式
  • 批准号:
    RGPIN-2014-05614
  • 财政年份:
    2016
  • 资助金额:
    $ 33.36万
  • 项目类别:
    Discovery Grants Program - Individual
Shimura varieties - intersection theory, rigid geometry, stratifications and p-adic modular forms
Shimura 品种 - 相交理论、刚性几何、分层和 p-adic 模形式
  • 批准号:
    RGPIN-2014-05614
  • 财政年份:
    2015
  • 资助金额:
    $ 33.36万
  • 项目类别:
    Discovery Grants Program - Individual
Shimura varieties - intersection theory, rigid geometry, stratifications and p-adic modular forms
Shimura 品种 - 相交理论、刚性几何、分层和 p-adic 模形式
  • 批准号:
    RGPIN-2014-05614
  • 财政年份:
    2014
  • 资助金额:
    $ 33.36万
  • 项目类别:
    Discovery Grants Program - Individual
Intersection numbers in enumerative algebraic geometry
枚举代​​数几何中的交点数
  • 批准号:
    383006-2009
  • 财政年份:
    2009
  • 资助金额:
    $ 33.36万
  • 项目类别:
    University Undergraduate Student Research Awards
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了