Stability and Instability in Topology
拓扑的稳定性和不稳定性
基本信息
- 批准号:1406209
- 负责人:
- 金额:$ 57.6万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-07-01 至 2019-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
AbstractAward: DMS 1406209, Principal Investigator: Benson FarbThe principal investigator proposes a program of research, education and outreach that is meant to have a maximal impact at all levels. The general research project of the principal investigator involves the topological structure of so-called "locally symmetric spaces." These spaces appear throughout mathematics and physics, and encode deep, complicated and applicable information. The principal investigator and his collaborators have found a new pattern that occurs in these spaces, and they have built a conjectural picture of other patterns that should exist. The principal will continue to engage with students at all levels, from PhD to undergraduate to K-12. This outreach includes in particular the training of a number of students from under-represented groups. It also includes public outreach, communicating of the power of mathematics and science, and how it impacts our daily lives, via public lectures.In more technical terms, the principal investgiator proposes work with A. Putman and T. Church to expose new phenomena and introduce new methods to the study of the cohomology of arithmetic groups. These methods are meant to show, in particular, that the top-dimensional cohomology of certain arithmetic groups over rings of integers in a number field vanishes rationally when the number field has class number one, and otherwise has exponentially growing (in dimension) cohomology, with growth rate depending explicitly on class number. This work is part of a broader conjectural picture of low-codimension cohomology of arithmetic groups, made by the PI with Church and Putman.
摘要奖:DMS 1406209,首席研究员:Benson Farb首席研究员提出了一项旨在在所有层面产生最大影响的研究、教育和推广计划。首席研究员的总体研究项目涉及到所谓的“局部对称空间”的拓扑结构。这些空间出现在整个数学和物理中,并编码了深刻、复杂和适用的信息。首席研究员和他的合作者发现了在这些空间中出现的一种新模式,他们建立了一幅应该存在的其他模式的猜想图景。校长将继续与所有级别的学生接触,从博士到本科生再到K-12。这一外联活动特别包括培训来自任职人数不足群体的一些学生。它还包括公开宣传,通过公开讲座传播数学和科学的力量,以及它如何影响我们的日常生活。用更专业的术语来说,主要投资人建议与A·普特曼和T·丘奇合作,揭示新现象,并引入新方法来研究算术群的上同调。特别地,这些方法旨在证明当数域上的整数环上的某些算术群的顶维上同调为有理零时,当数域的类数为1时,数域上的上同调为指数增长的(在维上)上同调,并且增长率明显地依赖于类数。这项工作是由PI与丘奇和普特曼共同提出的关于算术群的低上维上同调的更广泛猜想的一部分。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Benson Farb其他文献
Every mapping class group is generated by 3 elements of finite order
每个映射类组由3个有限阶元素生成
- DOI:
- 发表时间:
2003 - 期刊:
- 影响因子:0
- 作者:
Tara E. Brendle;Benson Farb - 通讯作者:
Benson Farb
Combing Lattices in Semisimple Lie Groups
组合半单李群中的格
- DOI:
10.1515/9783110908978.57 - 发表时间:
1995 - 期刊:
- 影响因子:0
- 作者:
Benson Farb - 通讯作者:
Benson Farb
Filling-invariants at infinity for manifolds of nonpositive curvature
非正曲率流形的无穷远填充不变量
- DOI:
- 发表时间:
1995 - 期刊:
- 影响因子:0
- 作者:
N. Brady;Benson Farb - 通讯作者:
Benson Farb
Geometry of the Wiman–Edge pencil and the Wiman curve
维曼边缘铅笔的几何形状和维曼曲线
- DOI:
10.1007/s10711-020-00517-7 - 发表时间:
2019-12 - 期刊:
- 影响因子:0.5
- 作者:
Igor Dolgachev;Benson Farb;Eduard Looijenga - 通讯作者:
Eduard Looijenga
Some problems on mapping class groups and moduli space
- DOI:
10.1090/pspum/074/2264130 - 发表时间:
2006-06 - 期刊:
- 影响因子:0
- 作者:
Benson Farb - 通讯作者:
Benson Farb
Benson Farb的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Benson Farb', 18)}}的其他基金
New Directions in Geometric Group Theory and Topology
几何群论和拓扑学的新方向
- 批准号:
2203355 - 财政年份:2022
- 资助金额:
$ 57.6万 - 项目类别:
Continuing Grant
Braids, Resolvent Degree and Hilbert's 13th Problem
辫子、解决度和希尔伯特第十三问题
- 批准号:
1811772 - 财政年份:2018
- 资助金额:
$ 57.6万 - 项目类别:
Continuing Grant
Representation Theory and Homological Stability in Topology
拓扑中的表示论和同调稳定性
- 批准号:
1105643 - 财政年份:2011
- 资助金额:
$ 57.6万 - 项目类别:
Continuing Grant
Geometry and Dynamics of the group of Hamiltonian diffeomorphisms of a surface
表面哈密顿微分同胚群的几何与动力学
- 批准号:
0905911 - 财政年份:2009
- 资助金额:
$ 57.6万 - 项目类别:
Standard Grant
Topics at the Intersection of Geometry, Topology and Group Theory
几何、拓扑和群论交叉的主题
- 批准号:
0604633 - 财政年份:2006
- 资助金额:
$ 57.6万 - 项目类别:
Continuing Grant
CAREER: Topics at the Intersection of Geometry, Topology and Group Theory
职业:几何、拓扑和群论交叉的主题
- 批准号:
9984815 - 财政年份:2000
- 资助金额:
$ 57.6万 - 项目类别:
Standard Grant
Large Scale Geometry, Topology, and Rigidity in Geometric Group Theory
几何群论中的大尺度几何、拓扑和刚性
- 批准号:
9704640 - 财政年份:1997
- 资助金额:
$ 57.6万 - 项目类别:
Standard Grant
Mathematical Sciences: Postdoctoral Research Fellowship
数学科学:博士后研究奖学金
- 批准号:
9407555 - 财政年份:1994
- 资助金额:
$ 57.6万 - 项目类别:
Fellowship Award
相似海外基金
STEPPING OUT - Understanding the ground truth and mechanisms of falls and balance instability in community dwelling older people.
走出去——了解社区老年人跌倒和平衡不稳定的基本事实和机制。
- 批准号:
EP/Y029143/1 - 财政年份:2024
- 资助金额:
$ 57.6万 - 项目类别:
Research Grant
Exploring the adaptive role of genomic instability in Trypanosoma cruzi.
探索克氏锥虫基因组不稳定性的适应性作用。
- 批准号:
MR/Y001338/1 - 财政年份:2024
- 资助金额:
$ 57.6万 - 项目类别:
Research Grant
極超音速境界層に対する回転円錐によるcrossflow instability導入と境界層遷移の制御
引入横流不稳定性并使用高超声速边界层中的旋转锥体控制边界层转变
- 批准号:
24K17452 - 财政年份:2024
- 资助金额:
$ 57.6万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Collaborative Research: A new understanding of droplet breakup: hydrodynamic instability under complex acceleration
合作研究:对液滴破碎的新认识:复杂加速下的流体动力学不稳定性
- 批准号:
2332916 - 财政年份:2024
- 资助金额:
$ 57.6万 - 项目类别:
Standard Grant
Collaborative Research: A new understanding of droplet breakup: hydrodynamic instability under complex acceleration
合作研究:对液滴破碎的新认识:复杂加速下的流体动力学不稳定性
- 批准号:
2332917 - 财政年份:2024
- 资助金额:
$ 57.6万 - 项目类别:
Standard Grant
ROBIN: Rotation-based Buckling Instability Analysis, and Applications to Creation of Novel Soft Mechanisms
ROBIN:基于旋转的屈曲不稳定性分析及其在新型软机构创建中的应用
- 批准号:
24K00847 - 财政年份:2024
- 资助金额:
$ 57.6万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
The Proactive and Reactive Neuromechanics of Instability in Aging and Dementia with Lewy Bodies
衰老和路易体痴呆中不稳定的主动和反应神经力学
- 批准号:
10749539 - 财政年份:2024
- 资助金额:
$ 57.6万 - 项目类别:
Collaborative Research: The Role of Ice Sheet Instability in Marine Carbon and Nutrient Cycling in the Eurasian Arctic
合作研究:冰盖不稳定在欧亚北极海洋碳和养分循环中的作用
- 批准号:
2231936 - 财政年份:2023
- 资助金额:
$ 57.6万 - 项目类别:
Standard Grant
Collaborative Research: SHINE: Observational and Theoretical Studies of the Parametric Decay Instability in the Lower Solar Atmosphere
合作研究:SHINE:太阳低层大气参数衰变不稳定性的观测和理论研究
- 批准号:
2229101 - 财政年份:2023
- 资助金额:
$ 57.6万 - 项目类别:
Standard Grant
Collaborative Research: Improving Model Representations of Antarctic Ice-shelf Instability and Break-up due to Surface Meltwater Processes
合作研究:改进地表融水过程导致的南极冰架不稳定和破裂的模型表示
- 批准号:
2213704 - 财政年份:2023
- 资助金额:
$ 57.6万 - 项目类别:
Standard Grant














{{item.name}}会员




