Representation Theory and Homological Stability in Topology

拓扑中的表示论和同调稳定性

基本信息

  • 批准号:
    1105643
  • 负责人:
  • 金额:
    $ 41.21万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2011
  • 资助国家:
    美国
  • 起止时间:
    2011-07-01 至 2015-06-30
  • 项目状态:
    已结题

项目摘要

The study of the (co)homology of various moduli spaces, mapping class groups and arithemtic groups is a central topic in topology, with connections to algebraic geometry, number theory, combinatorial group theory and more. The problems on which the PI proposes to work include the following. 1. Confirming a broad conjectural picture of the cohomology of pure braid groups, Torelli-type groups, and congruence subgroups. Such conjectures are phrased in the language of {\em representation stability}, a theory (recently discovered by the PI and T. Church) that imports representation theory as a powerful new tool into the study of homological stability phenomena. 2. Applying cohomological computations to computing arithmetic statistics for algebraic varieties, for polynomials, and for maximal tori in algebraic groups over finite fields. 3. Giving a deeper geometric understanding of the Morita-Mumford-Miller classes via a remarkable coincidence between certain characteristic numbers, as discovered by the PI and T. Church. 4. Constructing a large number of linearly independent unstable cohomology classes in mapping class groups and arithmetic groups. While it has been indirectly deduced that super-exponentially many such dimensions of such cohomology must exist, almost no such classes are known. The technique proposed here is a new one, using torsion groups to detect rational homology classes. 5. Constructing $p$-torsion in the homology of level $p$ congruence subgroups of arithmetic groups, mapping class groups, and other groups. Again the technique here is new, and has already been applied successfully by the PI and T. Church.Moduli spaces, or the spaces of shapes, are fundamental objects in mathematics. Understanding their structure and describing their basic topological properties is an important problem. Such descriptions are needed if one wants to understand the evolution of shapes over time, or if one wants to find the most efficient shape needed to solve a problem. The problem is the topological structure of moduli spaces is extremely complicated to describe. The purpose of this proposal is to apply the powerful machinery of representation theory in order to give a simpler, easier-to-work-with encoding of these complicated structures. The PI and T. Church discovered that such a language is applicable to structures all over mathematics, allowing for new descriptions and new insights into the structure of complicated objects. The PI proposes to apply these ideas to a variety of problems, with applications to topology, Lie algebras, and counting problems in number theory.
研究各种模空间、映射类群和算术群的(上)同调是拓扑学的中心课题,与代数几何、数论、组合群论等有联系。 PI建议开展工作的问题包括以下方面。1.给出了纯辫群、Torelli型群和同余子群的上同调的一个广泛的几何图形。 这种表述是用表征稳定性的语言来表述的,这是一种理论(最近由PI和T。教会),进口表示理论作为一个强大的新工具到同调稳定性现象的研究。2.将上同调计算应用于有限域上代数群中代数簇、多项式和极大环面的算术统计。3.通过PI和T发现的某些特征数之间的显著重合,对Morita-Mumford-米勒类给出了更深层次的几何理解。教堂4.在映射类群和算术群中构造大量线性无关的不稳定上同调类。 虽然它已间接推断出,超指数许多这样的维度,这种上同调必须存在,几乎没有这样的类是已知的。 这里提出的技术是一个新的,使用扭群来检测有理同调类。5.构造算术群、映射类群及其它群的水平p$同余子群的同调中的p$-挠。 同样,这里的技术是新的,并且已经被PI和T成功地应用。模空间,或形状空间,是数学中的基本对象。 了解它们的结构和描述它们的基本拓扑性质是一个重要的问题。 如果想要了解形状随时间的演变,或者想要找到解决问题所需的最有效形状,则需要这样的描述。 问题是模空间的拓扑结构非常复杂。 这个提议的目的是应用表征理论的强大机制,以便对这些复杂结构给出一个更简单、更易于使用的编码。 PI和T。丘奇发现,这种语言适用于整个数学结构,允许对复杂对象的结构进行新的描述和新的见解。 PI建议将这些思想应用于各种问题,应用于拓扑学,李代数和数论中的计数问题。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Benson Farb其他文献

Every mapping class group is generated by 3 elements of finite order
每个映射类组由3个有限阶元素生成
  • DOI:
  • 发表时间:
    2003
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Tara E. Brendle;Benson Farb
  • 通讯作者:
    Benson Farb
Combing Lattices in Semisimple Lie Groups
组合半单李群中的格
  • DOI:
    10.1515/9783110908978.57
  • 发表时间:
    1995
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Benson Farb
  • 通讯作者:
    Benson Farb
Filling-invariants at infinity for manifolds of nonpositive curvature
非正曲率流形的无穷远填充不变量
  • DOI:
  • 发表时间:
    1995
  • 期刊:
  • 影响因子:
    0
  • 作者:
    N. Brady;Benson Farb
  • 通讯作者:
    Benson Farb
Geometry of the Wiman–Edge pencil and the Wiman curve
维曼边缘铅笔的几何形状和维曼曲线
  • DOI:
    10.1007/s10711-020-00517-7
  • 发表时间:
    2019-12
  • 期刊:
  • 影响因子:
    0.5
  • 作者:
    Igor Dolgachev;Benson Farb;Eduard Looijenga
  • 通讯作者:
    Eduard Looijenga
Some problems on mapping class groups and moduli space
  • DOI:
    10.1090/pspum/074/2264130
  • 发表时间:
    2006-06
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Benson Farb
  • 通讯作者:
    Benson Farb

Benson Farb的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Benson Farb', 18)}}的其他基金

New Directions in Geometric Group Theory and Topology
几何群论和拓扑学的新方向
  • 批准号:
    2203355
  • 财政年份:
    2022
  • 资助金额:
    $ 41.21万
  • 项目类别:
    Continuing Grant
Braids, Resolvent Degree and Hilbert's 13th Problem
辫子、解决度和希尔伯特第十三问题
  • 批准号:
    1811772
  • 财政年份:
    2018
  • 资助金额:
    $ 41.21万
  • 项目类别:
    Continuing Grant
Stability and Instability in Topology
拓扑的稳定性和不稳定性
  • 批准号:
    1406209
  • 财政年份:
    2014
  • 资助金额:
    $ 41.21万
  • 项目类别:
    Continuing Grant
Geometry and Dynamics of the group of Hamiltonian diffeomorphisms of a surface
表面哈密顿微分同胚群的几何与动力学
  • 批准号:
    0905911
  • 财政年份:
    2009
  • 资助金额:
    $ 41.21万
  • 项目类别:
    Standard Grant
Geometry, Rigidity, and Group Actions
几何、刚度和群作用
  • 批准号:
    0734851
  • 财政年份:
    2007
  • 资助金额:
    $ 41.21万
  • 项目类别:
    Standard Grant
Topics at the Intersection of Geometry, Topology and Group Theory
几何、拓扑和群论交叉的主题
  • 批准号:
    0604633
  • 财政年份:
    2006
  • 资助金额:
    $ 41.21万
  • 项目类别:
    Continuing Grant
CAREER: Topics at the Intersection of Geometry, Topology and Group Theory
职业:几何、拓扑和群论交叉的主题
  • 批准号:
    9984815
  • 财政年份:
    2000
  • 资助金额:
    $ 41.21万
  • 项目类别:
    Standard Grant
Large Scale Geometry, Topology, and Rigidity in Geometric Group Theory
几何群论中的大尺度几何、拓扑和刚性
  • 批准号:
    9704640
  • 财政年份:
    1997
  • 资助金额:
    $ 41.21万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Postdoctoral Research Fellowship
数学科学:博士后研究奖学金
  • 批准号:
    9407555
  • 财政年份:
    1994
  • 资助金额:
    $ 41.21万
  • 项目类别:
    Fellowship Award

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
基于isomorph theory研究尘埃等离子体物理量的微观动力学机制
  • 批准号:
    12247163
  • 批准年份:
    2022
  • 资助金额:
    18.00 万元
  • 项目类别:
    专项项目
Toward a general theory of intermittent aeolian and fluvial nonsuspended sediment transport
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    55 万元
  • 项目类别:
英文专著《FRACTIONAL INTEGRALS AND DERIVATIVES: Theory and Applications》的翻译
  • 批准号:
    12126512
  • 批准年份:
    2021
  • 资助金额:
    12.0 万元
  • 项目类别:
    数学天元基金项目
基于Restriction-Centered Theory的自然语言模糊语义理论研究及应用
  • 批准号:
    61671064
  • 批准年份:
    2016
  • 资助金额:
    65.0 万元
  • 项目类别:
    面上项目

相似海外基金

Homological Aspects of Commutative Algebra and Applications to Modular Representation Theory
交换代数的同调方面及其在模表示理论中的应用
  • 批准号:
    1700985
  • 财政年份:
    2017
  • 资助金额:
    $ 41.21万
  • 项目类别:
    Continuing Grant
Homological interactions between singularity theory, representation theory and algebraic geometry
奇点理论、表示论和代数几何之间的同调相互作用
  • 批准号:
    EP/L017962/1
  • 财政年份:
    2014
  • 资助金额:
    $ 41.21万
  • 项目类别:
    Fellowship
Applications of homological category theory to algebraic geometry and representation theory
同调范畴论在代数几何和表示论中的应用
  • 批准号:
    22740005
  • 财政年份:
    2010
  • 资助金额:
    $ 41.21万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
Homological structures at the interface of abstract representation theory and algebraic Lie theory
抽象表示论与代数李理论接口处的同调结构
  • 批准号:
    125747198
  • 财政年份:
    2009
  • 资助金额:
    $ 41.21万
  • 项目类别:
    Priority Programmes
RUI: Representation theory and homological algebra over local rings
RUI:局部环上的表示论和同调代数
  • 批准号:
    0901427
  • 财政年份:
    2009
  • 资助金额:
    $ 41.21万
  • 项目类别:
    Standard Grant
Study of algebras relating to quadratic form by using representation theory and homological algebras
利用表示论和同调代数研究与二次型有关的代数
  • 批准号:
    16540019
  • 财政年份:
    2004
  • 资助金额:
    $ 41.21万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Representation theory of algebras, homological duality of quasi-hereditary algebras; to support visit by E. Lukacs, Dept. of Math., University of Budapest, Budapest, Hungary
代数表示论、准遗传代数的同调对偶性;
  • 批准号:
    155731-1993
  • 财政年份:
    1994
  • 资助金额:
    $ 41.21万
  • 项目类别:
    Foreign Researcher Awards (H)
Mathematical Sciences: Homological Aspects of Representation Theory
数学科学:表示论的同调方面
  • 批准号:
    9303410
  • 财政年份:
    1993
  • 资助金额:
    $ 41.21万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Homological and Computational Questions in Representation Theory
数学科学:表示论中的同调和计算问题
  • 批准号:
    9003103
  • 财政年份:
    1990
  • 资助金额:
    $ 41.21万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Homological Algebra and Representation Theory
数学科学:同调代数和表示论
  • 批准号:
    8501131
  • 财政年份:
    1985
  • 资助金额:
    $ 41.21万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了