Braids, Resolvent Degree and Hilbert's 13th Problem
辫子、解决度和希尔伯特第十三问题
基本信息
- 批准号:1811772
- 负责人:
- 金额:$ 55.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-07-15 至 2023-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Polynomial equations are everywhere. They are used to describe, explain and predict the motion of any object undergoing a force (gravitational, electrical, etc); they are used to model financial, chemical and biological systems; and they are part of computer algorithms that we use every day. The oldest and perhaps most fundamental problem about polynomials are to understand their solutions; in particular, how the roots (i.e. solutions) of a polynomial depend on its coefficients. The purpose of this project is to use the incredible power of modern mathematics in order to shed new light on this question.One of the main themes in understanding polynomials is to determine the minimal number of parameters R(n) to which the solution of a general degree n polynomial can be reduced. A huge amount of work in the 16th-19th centuries was devoted to giving upper bounds on R(n). Hilbert's 13th Problem (and related conjectures) posits some specific lower bounds on R(n), but until now no nontrivial lower bound has been shown. The formal notion of "resolvent degree" (due to Brauer and Arnol'd-Shimura) makes the definition of R(n) explicit. J. Wolfson and the investigator have built a framework in which these problems are put in a much broader context, which includes for example many problems from enumerative algebraic geometry. With M. Kisin, the investigator is using this new point of view, together with powerful modern tools, to attack Hilbert's problems.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
多项式方程到处都是。 它们被用来描述、解释和预测任何物体在力(引力、电等)作用下的运动;它们被用来模拟金融、化学和生物系统;它们是我们每天使用的计算机算法的一部分。 关于多项式的最古老,也可能是最基本的问题是理解它们的解;特别是,多项式的根(即解)如何依赖于它的系数。这个项目的目的是利用现代数学的不可思议的力量,以揭示这个问题的新的光。在理解多项式的主要主题之一是确定的最小数量的参数R(n)的解决方案的一般n次多项式可以减少。 大量的工作在16 - 19世纪致力于给上界的R(n)。希尔伯特第13问题(及相关命题)在R(n)上设定了一些特定的下界,但直到现在还没有非平凡的下界被证明。 “预解度”的形式概念(由于Brauer和Arnol 'd-Shimura)使R(n)的定义明确。 J.沃尔夫森和研究者建立了一个框架,在这个框架中,这些问题被放在一个更广泛的背景下,其中包括例如枚举代数几何中的许多问题。 与M.该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Benson Farb其他文献
Every mapping class group is generated by 3 elements of finite order
每个映射类组由3个有限阶元素生成
- DOI:
- 发表时间:
2003 - 期刊:
- 影响因子:0
- 作者:
Tara E. Brendle;Benson Farb - 通讯作者:
Benson Farb
Combing Lattices in Semisimple Lie Groups
组合半单李群中的格
- DOI:
10.1515/9783110908978.57 - 发表时间:
1995 - 期刊:
- 影响因子:0
- 作者:
Benson Farb - 通讯作者:
Benson Farb
Filling-invariants at infinity for manifolds of nonpositive curvature
非正曲率流形的无穷远填充不变量
- DOI:
- 发表时间:
1995 - 期刊:
- 影响因子:0
- 作者:
N. Brady;Benson Farb - 通讯作者:
Benson Farb
Geometry of the Wiman–Edge pencil and the Wiman curve
维曼边缘铅笔的几何形状和维曼曲线
- DOI:
10.1007/s10711-020-00517-7 - 发表时间:
2019-12 - 期刊:
- 影响因子:0.5
- 作者:
Igor Dolgachev;Benson Farb;Eduard Looijenga - 通讯作者:
Eduard Looijenga
Some problems on mapping class groups and moduli space
- DOI:
10.1090/pspum/074/2264130 - 发表时间:
2006-06 - 期刊:
- 影响因子:0
- 作者:
Benson Farb - 通讯作者:
Benson Farb
Benson Farb的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Benson Farb', 18)}}的其他基金
New Directions in Geometric Group Theory and Topology
几何群论和拓扑学的新方向
- 批准号:
2203355 - 财政年份:2022
- 资助金额:
$ 55.5万 - 项目类别:
Continuing Grant
Stability and Instability in Topology
拓扑的稳定性和不稳定性
- 批准号:
1406209 - 财政年份:2014
- 资助金额:
$ 55.5万 - 项目类别:
Continuing Grant
Representation Theory and Homological Stability in Topology
拓扑中的表示论和同调稳定性
- 批准号:
1105643 - 财政年份:2011
- 资助金额:
$ 55.5万 - 项目类别:
Continuing Grant
Geometry and Dynamics of the group of Hamiltonian diffeomorphisms of a surface
表面哈密顿微分同胚群的几何与动力学
- 批准号:
0905911 - 财政年份:2009
- 资助金额:
$ 55.5万 - 项目类别:
Standard Grant
Topics at the Intersection of Geometry, Topology and Group Theory
几何、拓扑和群论交叉的主题
- 批准号:
0604633 - 财政年份:2006
- 资助金额:
$ 55.5万 - 项目类别:
Continuing Grant
CAREER: Topics at the Intersection of Geometry, Topology and Group Theory
职业:几何、拓扑和群论交叉的主题
- 批准号:
9984815 - 财政年份:2000
- 资助金额:
$ 55.5万 - 项目类别:
Standard Grant
Large Scale Geometry, Topology, and Rigidity in Geometric Group Theory
几何群论中的大尺度几何、拓扑和刚性
- 批准号:
9704640 - 财政年份:1997
- 资助金额:
$ 55.5万 - 项目类别:
Standard Grant
Mathematical Sciences: Postdoctoral Research Fellowship
数学科学:博士后研究奖学金
- 批准号:
9407555 - 财政年份:1994
- 资助金额:
$ 55.5万 - 项目类别:
Fellowship Award
相似海外基金
Geometric Scattering Theory, Resolvent Estimates, and Wave Asymptotics
几何散射理论、分辨估计和波渐近学
- 批准号:
DE230101165 - 财政年份:2023
- 资助金额:
$ 55.5万 - 项目类别:
Discovery Early Career Researcher Award
Geometric Scattering Theory, Resolvent Estimates, and Wave Asymptotics
几何散射理论、分辨估计和波渐近学
- 批准号:
2204322 - 财政年份:2022
- 资助金额:
$ 55.5万 - 项目类别:
Continuing Grant
Development of numerical verification method for resolvent
解析溶液数值验证方法的开发
- 批准号:
21K03373 - 财政年份:2021
- 资助金额:
$ 55.5万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Synthetic simulation of turbulent flow using resolvent analysis
使用解析分析的湍流综合模拟
- 批准号:
2454030 - 财政年份:2020
- 资助金额:
$ 55.5万 - 项目类别:
Studentship
CAREER: Resolvent Degree, Hilbert's 13th Problem and Geometry
职业:解决度、希尔伯特第十三题和几何
- 批准号:
1944862 - 财政年份:2020
- 资助金额:
$ 55.5万 - 项目类别:
Continuing Grant
Mesh-free resolvent analysis for operator-based discovery of large-scale coherent structures: implementation and the example of the stratified wake behind a sphere
用于基于算子发现大规模相干结构的无网格解析分析:球体后面分层尾流的实现和示例
- 批准号:
1953999 - 财政年份:2020
- 资助金额:
$ 55.5万 - 项目类别:
Standard Grant
Resolvent type trace formulas, automorphic forms and zeta functions
解析型微量公式、自同构形式和 zeta 函数
- 批准号:
26400017 - 财政年份:2014
- 资助金额:
$ 55.5万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Study of automorphic forms and zeta functions by using generalized or refined resolvent type trace formulas
使用广义或精化的解析型迹公式研究自同构形式和 zeta 函数
- 批准号:
23540020 - 财政年份:2011
- 资助金额:
$ 55.5万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Resolvent estimates for Helmholtz equations in an exterior domain and their applications to scattering problems
外域亥姆霍兹方程的求解估计及其在散射问题中的应用
- 批准号:
23540222 - 财政年份:2011
- 资助金额:
$ 55.5万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Evolution equations and their resolvent problems
进化方程及其解决的问题
- 批准号:
20540190 - 财政年份:2008
- 资助金额:
$ 55.5万 - 项目类别:
Grant-in-Aid for Scientific Research (C)