Holomorphic Curves and Two-Dimensional Gauge Theory
全纯曲线和二维规范理论
基本信息
- 批准号:0605097
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2006
- 资助国家:美国
- 起止时间:2006-07-01 至 2012-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
AbstractAward: DMS-0605097Principal Investigator: Christopher WoodwardThe PI will carry out research projects on the interplay ofholomorphic curves and two-dimensional gauge theory. WithK. Wehrheim and S. Mau the PI will study the role of Lagrangiancorrespondences in Floer-Fukaya theory, and in particular provethat the composition of functors associated to Lagrangiancorrespondences is the functor associated to the composition. Hewill also develop the mirror analogue of Horja's exact triangle.He will apply these results to the construction of new invariantsof three and four-manifolds with boundary, possibly containingtangles. With C. Teleman he will prove the Newstead-Ramananconjectures on Chern classes of the moduli space of bundles on acurve and investigate K-theoretic Gromov-Witten invariants ofquotient stacks. With E. Gonzalez he will investigateGromov-Witten invariants for symplectic manifolds withHamiltonian group actions, generalizing the topological limit oftwo-dimensional Yang-Mills theory. He will run several researchexperiences for undergraduates, and improve the department'sundergraduate seminar program.These projects will advance the understanding of symplecticgeometry, which is the mathematical language for classicalmechanics, and the relationship between category theory,representation theory, and quantum physics. The research is alsoexpected to lead to advances in the theory of finite- andinfinite-dimensional Lie groups, which represent symmetries inmany areas of science.
摘要奖:DMS-0605097首席研究员克里斯托弗·伍德沃德国际和平研究所将开展全纯曲线和二维规范理论相互作用的研究项目。WithK.Wehheim和S.Mau将研究拉格朗日响应在Floer-Fukaya理论中的作用,特别是证明与拉格朗日响应相关的函子的组成是与该组成相关的函子。他还将发展霍尔哈精确三角形的镜像类比。他将把这些结果应用于构造具有边界的三维和四维流形的新不变量,可能包含纠缠。他将与C.Teleman一起证明曲线上丛的模空间的Chern类上的Newstead-Ramananan猜想,并研究商栈的K-理论Gromov-Witten不变量。他将与冈萨雷斯一起研究具有哈密顿群作用的辛流形的Gromov-Witten不变量,推广了二维Yang-Mills理论的拓扑极限。他将为本科生提供一些研究经验,并改进系的本科生研讨会计划。这些项目将促进对辛几何的理解,辛几何是经典力学的数学语言,以及范畴理论、表示理论和量子物理之间的关系。这项研究还有望促进有限和无限维李群理论的进步,这些李群代表着许多科学领域的对称性。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Christopher Woodward其他文献
Deprivation is not associated with increased severity of disease at presentation in primary hyperparathyroidism (pHPT)
- DOI:
10.1016/j.ejso.2017.10.002 - 发表时间:
2017-12-01 - 期刊:
- 影响因子:
- 作者:
Christopher Woodward;Richard Egan;Michael Stechman;David Scott-Coombes - 通讯作者:
David Scott-Coombes
emAb initio/em molecular dynamics of pipe diffusion in fcc Ni beyond transition state theory
- DOI:
10.1016/j.actamat.2021.117357 - 发表时间:
2022-01-01 - 期刊:
- 影响因子:9.300
- 作者:
Luke J. Wirth;Christopher Woodward;Amir A. Farajian - 通讯作者:
Amir A. Farajian
Predicting help desk ticket reassignments with graph convolutional networks
使用图卷积网络预测服务台票证重新分配
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
Jörg Schad;R. Sambasivan;Christopher Woodward - 通讯作者:
Christopher Woodward
Intrinsic factors responsible for brittle versus ductile nature of refractory high-entropy alloys
导致难熔高熵合金脆性与延性的内在因素
- DOI:
10.1038/s41467-024-45639-8 - 发表时间:
2024 - 期刊:
- 影响因子:16.6
- 作者:
T. Tsuru;Shu Han;Shutaro Matsuura;Zhenghao Chen;K. Kishida;Ivan Iobzenko;Satish I Rao;Christopher Woodward;Easo P George;Haruyuki Inui - 通讯作者:
Haruyuki Inui
First-principles study of the effect of Al and Hf impurities on Co<math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si6.svg" class="math"><msub><mrow></mrow><mtext>3</mtext></msub></math>W antiphase boundary energies
- DOI:
10.1016/j.actamat.2021.117075 - 发表时间:
2021-08-15 - 期刊:
- 影响因子:
- 作者:
Chiraag Nataraj;Ruoshi Sun;Christopher Woodward;Axel van de Walle - 通讯作者:
Axel van de Walle
Christopher Woodward的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Christopher Woodward', 18)}}的其他基金
Adiabatic Limits of Quantum Symplectic Invariants
量子辛不变量的绝热极限
- 批准号:
2105417 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Standard Grant
Lagrangian Floer Theory and Quantum Invariants of Symplectic Manifolds
拉格朗日弗洛尔理论和辛流形的量子不变量
- 批准号:
1711070 - 财政年份:2017
- 资助金额:
-- - 项目类别:
Continuing Grant
Gauged Gromov-Witten theory and holomorphic quilts
计量格罗莫夫-维滕理论和全纯被子
- 批准号:
0904358 - 财政年份:2009
- 资助金额:
-- - 项目类别:
Standard Grant
Workshop on Equivariant Gromov-Witten Theory and Symplectic Vortices; July 2009, Luminy, France
等变 Gromov-Witten 理论和辛涡流研讨会;
- 批准号:
0835558 - 财政年份:2008
- 资助金额:
-- - 项目类别:
Standard Grant
Heegaard Splittings and the Combinatorics of Three-Manifolds
Heegaard 分裂和三流形组合
- 批准号:
0508971 - 财政年份:2005
- 资助金额:
-- - 项目类别:
Standard Grant
Symplectic geometry, physics and algebraic combinatorics
辛几何、物理学和代数组合学
- 批准号:
0093647 - 财政年份:2001
- 资助金额:
-- - 项目类别:
Standard Grant
Moduli spaces of flat connections and Hamiltonian actions of loop groups
平连接的模空间和环群的哈密顿作用
- 批准号:
9971357 - 财政年份:1999
- 资助金额:
-- - 项目类别:
Standard Grant
Mathematical Sciences Postdoctoral Research Fellowships
数学科学博士后研究奖学金
- 批准号:
9627763 - 财政年份:1996
- 资助金额:
-- - 项目类别:
Fellowship Award
相似海外基金
Hysteresis of two-phase flows in porous and fractured media: From micro-scale Haines jumps to macro-scale pressure-saturation curves
多孔和裂缝介质中两相流的滞后:从微观尺度海恩斯跳跃到宏观尺度压力饱和曲线
- 批准号:
EP/V050613/1 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Research Grant
TWO-PROCESS RECOGNITION MEMORY: INHIBITION & ROC CURVES
双进程识别存储器:抑制
- 批准号:
6392558 - 财政年份:2001
- 资助金额:
-- - 项目类别:
Two-process recognition memory: Evidence from ROC curves
两进程识别记忆:来自 ROC 曲线的证据
- 批准号:
7392215 - 财政年份:2001
- 资助金额:
-- - 项目类别:
Two-process recognition memory: Evidence from ROC curves
两进程识别记忆:来自 ROC 曲线的证据
- 批准号:
7264342 - 财政年份:2001
- 资助金额:
-- - 项目类别:
Two-process recognition memory: Evidence from ROC curves
两进程识别记忆:来自 ROC 曲线的证据
- 批准号:
7600667 - 财政年份:2001
- 资助金额:
-- - 项目类别:
Two-process recognition memory: Evidence from ROC curves
两进程识别记忆:来自 ROC 曲线的证据
- 批准号:
7817068 - 财政年份:2001
- 资助金额:
-- - 项目类别:
TWO-PROCESS RECOGNITION MEMORY: INHIBITION & ROC CURVES
双进程识别存储器:抑制
- 批准号:
6128815 - 财政年份:2000
- 资助金额:
-- - 项目类别:
The arithmetic of curves of genus two with elliptic differentials
椭圆微分属二曲线的算法
- 批准号:
105361-1991 - 财政年份:1993
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
The arithmetic of curves of genus two with elliptic differentials
椭圆微分属二曲线的算法
- 批准号:
105361-1991 - 财政年份:1992
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual