Adiabatic Limits of Quantum Symplectic Invariants

量子辛不变量的绝热极限

基本信息

  • 批准号:
    2105417
  • 负责人:
  • 金额:
    $ 48.42万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-07-01 至 2025-06-30
  • 项目状态:
    未结题

项目摘要

Symplectic geometry is the mathematical foundation for particle motion in classical physics. Recently, research in this area has centered on the study of quantum invariants defined using geometric objects known as holomorphic curves. These quantum invariants have appeared not only in fields of mathematics known as geometric analysis and low-dimensional topology but also in certain models in high-energy physics. The investigator will study the behavior of these quantum invariants under adiabatic limits in which directions in space or time are re-scaled. Applications will be of interest in topology and physics. The investigator will also continue his mentoring and outreach activities in mathematics education.The investigator will study three types of adiabatic limits of quantum invariants in symplectic geometry. First, he will study the limit of the Fukaya category of a symplectic manifold under the multi-directional symplectic field theory limit, which is equivalent in many cases to shrinking the fibers of a Lagrangian torus fibration. The investigator will extend previous results to Lagrangians compatible with this tropical limit and apply the results to examples arising in mirror symmetry, such as the computation of disk potentials. Secondly, the investigator will study the behavior of the Fukaya category and quantum cohomology under flips with non-trivial centers, or equivalently, mean curvature flow in which a subset of the symplectic manifold collapses over some non-trivial base, with the aim of constructing generators for the Fukaya category. A related project in gauge theory will study the behavior of higher rank monopole Floer homology under variation of monopole parameter, and relate these invariants with instanton homology and abelian monopole Floer homology. In a third project, the investigator will study the limits of flow spaces arising from Fukaya-isomorphic Lagrangians in cotangent bundles as the Lagrangians approach the zero section via rescaling, and in particular higher-dimensional moduli spaces of Morse flow trees that appear in the limit.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
辛几何是经典物理中粒子运动的数学基础。最近,这一领域的研究主要集中在研究使用被称为全纯曲线的几何对象定义的量子不变量。这些量子不变量不仅出现在几何分析和低维拓扑等数学领域,还出现在高能物理的某些模型中。研究人员将研究这些量子不变量在绝热极限下的行为,在绝热极限中,空间或时间的方向会被重新调整。应用程序将在拓扑学和物理学方面引起人们的兴趣。研究人员还将继续他在数学教育方面的指导和外展活动。研究人员将研究辛几何中量子不变量的三种绝热极限。首先,他将研究在多向辛场理论极限下辛流形的Fukaya范畴的极限,这在许多情况下等价于收缩拉格朗日环面纤维。研究人员将把以前的结果推广到与热带极限相容的拉格朗日,并将结果应用于镜像对称的例子,如盘势的计算。其次,研究者将研究Fukaya范畴和量子上同调在具有非平凡中心的翻转下的行为,或者等价地,在辛流形的子集在一些非平凡基上坍塌的平均曲率流下的行为,目的是构造Fukaya范畴的生成元。规范理论中的一个相关项目将研究高阶单极Floer同调在单极参数变化时的行为,并将这些不变量与瞬子同调和交换单极Floer同调联系起来。在第三个项目中,研究人员将通过重新缩放来研究余切丛中Fukaya同构拉格朗日所产生的流空间的极限,特别是出现在极限中的莫尔斯流树的高维模空间。这一裁决反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Invariance of immersed Floer cohomology under Maslov flows
Maslov流下浸没Floer上同调的不变性
  • DOI:
    10.2140/agt.2021.21.2313
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0.7
  • 作者:
    Palmer, Joseph;Woodward, Chris
  • 通讯作者:
    Woodward, Chris
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Christopher Woodward其他文献

Deprivation is not associated with increased severity of disease at presentation in primary hyperparathyroidism (pHPT)
  • DOI:
    10.1016/j.ejso.2017.10.002
  • 发表时间:
    2017-12-01
  • 期刊:
  • 影响因子:
  • 作者:
    Christopher Woodward;Richard Egan;Michael Stechman;David Scott-Coombes
  • 通讯作者:
    David Scott-Coombes
emAb initio/em molecular dynamics of pipe diffusion in fcc Ni beyond transition state theory
  • DOI:
    10.1016/j.actamat.2021.117357
  • 发表时间:
    2022-01-01
  • 期刊:
  • 影响因子:
    9.300
  • 作者:
    Luke J. Wirth;Christopher Woodward;Amir A. Farajian
  • 通讯作者:
    Amir A. Farajian
Predicting help desk ticket reassignments with graph convolutional networks
使用图卷积网络预测服务台票证重新分配
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Jörg Schad;R. Sambasivan;Christopher Woodward
  • 通讯作者:
    Christopher Woodward
Intrinsic factors responsible for brittle versus ductile nature of refractory high-entropy alloys
导致难熔高熵合金脆性与延性的内在因素
  • DOI:
    10.1038/s41467-024-45639-8
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    16.6
  • 作者:
    T. Tsuru;Shu Han;Shutaro Matsuura;Zhenghao Chen;K. Kishida;Ivan Iobzenko;Satish I Rao;Christopher Woodward;Easo P George;Haruyuki Inui
  • 通讯作者:
    Haruyuki Inui

Christopher Woodward的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Christopher Woodward', 18)}}的其他基金

Lagrangian Floer Theory and Quantum Invariants of Symplectic Manifolds
拉格朗日弗洛尔理论和辛流形的量子不变量
  • 批准号:
    1711070
  • 财政年份:
    2017
  • 资助金额:
    $ 48.42万
  • 项目类别:
    Continuing Grant
Vortices, Quilts, and Quasimaps
涡流、面组和拟图
  • 批准号:
    1207194
  • 财政年份:
    2012
  • 资助金额:
    $ 48.42万
  • 项目类别:
    Continuing Grant
Gauged Gromov-Witten theory and holomorphic quilts
计量格罗莫夫-维滕理论和全纯被子
  • 批准号:
    0904358
  • 财政年份:
    2009
  • 资助金额:
    $ 48.42万
  • 项目类别:
    Standard Grant
Workshop on Equivariant Gromov-Witten Theory and Symplectic Vortices; July 2009, Luminy, France
等变 Gromov-Witten 理论和辛涡流研讨会;
  • 批准号:
    0835558
  • 财政年份:
    2008
  • 资助金额:
    $ 48.42万
  • 项目类别:
    Standard Grant
Holomorphic Curves and Two-Dimensional Gauge Theory
全纯曲线和二维规范理论
  • 批准号:
    0605097
  • 财政年份:
    2006
  • 资助金额:
    $ 48.42万
  • 项目类别:
    Continuing Grant
Heegaard Splittings and the Combinatorics of Three-Manifolds
Heegaard 分裂和三流形组合
  • 批准号:
    0508971
  • 财政年份:
    2005
  • 资助金额:
    $ 48.42万
  • 项目类别:
    Standard Grant
Symplectic geometry, physics and algebraic combinatorics
辛几何、物理学和代数组合学
  • 批准号:
    0093647
  • 财政年份:
    2001
  • 资助金额:
    $ 48.42万
  • 项目类别:
    Standard Grant
Moduli spaces of flat connections and Hamiltonian actions of loop groups
平连接的模空间和环群的哈密顿作用
  • 批准号:
    9971357
  • 财政年份:
    1999
  • 资助金额:
    $ 48.42万
  • 项目类别:
    Standard Grant
Mathematical Sciences Postdoctoral Research Fellowships
数学科学博士后研究奖学金
  • 批准号:
    9627763
  • 财政年份:
    1996
  • 资助金额:
    $ 48.42万
  • 项目类别:
    Fellowship Award

相似海外基金

The limits of Quantum Computing: an approach via Post-Quantum Cryptography
量子计算的局限性:后量子密码学的方法
  • 批准号:
    EP/W02778X/2
  • 财政年份:
    2023
  • 资助金额:
    $ 48.42万
  • 项目类别:
    Fellowship
CAREER: Ultrafast Quantum Networks: Pushing the Limits of Photon Production
职业:超快量子网络:突破光子生产的极限
  • 批准号:
    2239327
  • 财政年份:
    2023
  • 资助金额:
    $ 48.42万
  • 项目类别:
    Continuing Grant
Overcoming photosensitivity limits and unlocking unprecedented quantum control using entangled two-photon absorption spectroscopy
使用纠缠双光子吸收光谱克服光敏性限制并解锁前所未有的量子控制
  • 批准号:
    566599-2021
  • 财政年份:
    2022
  • 资助金额:
    $ 48.42万
  • 项目类别:
    Vanier Canada Graduate Scholarship Tri-Council - Doctoral 3 years
The limits of Quantum Computing: an approach via Post-Quantum Cryptography
量子计算的局限性:后量子密码学的方法
  • 批准号:
    EP/W02778X/1
  • 财政年份:
    2022
  • 资助金额:
    $ 48.42万
  • 项目类别:
    Fellowship
Quantum Coherent Communications Beyond Current Limits
超越电流限制的量子相干通信
  • 批准号:
    2740369
  • 财政年份:
    2022
  • 资助金额:
    $ 48.42万
  • 项目类别:
    Studentship
Singular limits in nearly integrable quantum systems and complex dynamical systems
近可积量子系统和复杂动力系统中的奇异极限
  • 批准号:
    22H01146
  • 财政年份:
    2022
  • 资助金额:
    $ 48.42万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Overcoming photosensitivity limits and unlocking unprecedented quantum control using entangled two-photon absorption spectroscopy
使用纠缠双光子吸收光谱克服光敏性限制并解锁前所未有的量子控制
  • 批准号:
    566599-2021
  • 财政年份:
    2021
  • 资助金额:
    $ 48.42万
  • 项目类别:
    Vanier Canada Graduate Scholarship Tri-Council - Doctoral 3 years
Exploring the effect of correlations on quantum speed limits in interacting cold atom systems
探索相互作用的冷原子系统中相关性对量子速度极限的影响
  • 批准号:
    21K13856
  • 财政年份:
    2021
  • 资助金额:
    $ 48.42万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Pushing the digital limits in quantum simulation for advanced manufacturing
突破先进制造量子模拟的数字极限
  • 批准号:
    DP210101367
  • 财政年份:
    2021
  • 资助金额:
    $ 48.42万
  • 项目类别:
    Discovery Projects
PFI-TT: Pushing the limits of color quality and efficiency in solid state lighting with colloidal quantum dots.
PFI-TT:利用胶体量子点突破固态照明色彩质量和效率的极限。
  • 批准号:
    1827726
  • 财政年份:
    2018
  • 资助金额:
    $ 48.42万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了