Invariants of Normal Surface Singularities

法向表面奇点的不变量

基本信息

项目摘要

The proposal predicts substantial developments in three themes. The final goal of the first one is the topological classification of surface singularities; it aims to generalise the classical work of Artin and Laufer (and the author) about rational and elliptic singularities by identification of natural subfamilies beyond elliptic singularities, and topological determination of their analytic invariants. There is a special emphasise on hypersurfaces with rational homology sphere (RHS) links, when the author (with R. Mendris) conjectured that even the embedded topological type can be recovered from the link (hence, predicting an even sharper property than Zariski's `multiplicity conjecture'). The second part is motivated by a conjecture of L.I. Nicolaescu and the author which connects a certain Seiberg-Witten invariant of a RHS--link with the geometric genus of the singularity (as a generalisation of a conjecture of Neumann and Wahl valid for integer homology sphere links). The proposal targets the limits of the generalised conjecture. The new ingredients are provided by the recently invented Heegaard Floer homology (of Ozsvath and Szabo). The third part focuses an unexpected development of the second part applied in the classical open problem of classification of rational (uni)cuspidal projective plane curves. The author (in his joint article) formulates very strong criterion conjecturally satisfied (and in many cases verified) by the local topological types of singularities which can appear as singularities of such projective curves. It appears that it is much stronger than the existing criterions, conjecturally it even has a classification power. Its connection with Heegaard Floer theory is striking. Mathematical models which describe geometrical objects present in the real life or in the nature are represented by functions, or by the set where they are zero. In general, a function in a generic point behaves `nicely', but at some special points it may have some anomalies: these phenomena are described by singularity theory. Its mathematical methods vary rather diversely, it uses techniques from topology, algebra, analysis, combinatorics, number theory; in this way the results and the theory becomes very interesting (and difficult), it alloys different aspects. The proposal targets surface singularities, and the proposed problems lie in the core of singularity theory (which has revived recently with a large intensity). The proposal lines up a series of new objects and new methods which conceptually modify the general picture. The proposer's research will be integrated in the process of undergraduate, graduate and postdoctoral training.
该提案预计在三个主题上会有重大发展。最终目标的第一个是拓扑分类的表面奇点,它的目的是概括的经典工作的阿丁和劳弗(和作者)理性和椭圆奇点的确定自然亚科以外的椭圆奇点,和拓扑确定其解析不变量。 特别强调了具有有理同调球面(RHS)链的超曲面,当作者(与R。Mendris)指出,即使是嵌入的拓扑类型也可以从链接中恢复(因此,预测一个比Zebriki的“多重性”更尖锐的性质)。第二部分是由L. I.尼古拉斯库和作者,其中连接了一定的塞伯格-威滕不变的RHS-链接与几何属的奇异性(作为一个概括的猜想诺依曼和瓦尔有效的整数同源球链接)。 该提案的目标是广义猜想的极限。新的成分由最近发明的Heegaard Floer同源性(Ozsvath和Szabo)提供。第三部分集中了一个意想不到的发展,第二部分应用在经典的开放问题的分类合理(单)尖点射影平面曲线。作者(在他的联合文章)制定了非常强的标准,严格满足(并在许多情况下验证)的地方拓扑类型的奇点,可以出现作为奇点的这种投影曲线。它似乎比现有的标准强得多,甚至具有分类能力。它与Heegaard Floer理论的联系是惊人的。描述存在于真实的生活或自然界中的几何对象的数学模型由函数或由它们为零的集合表示。一般来说,一个函数在一般点上表现得“很好”,但在某些特殊点上它可能会有一些异常:这些现象由奇点理论描述。它的数学方法各不相同,而diligence,它使用的技术,从拓扑,代数,分析,组合学,数论;以这种方式的结果和理论变得非常有趣(和困难),它合金不同的方面。 该建议的目标是表面奇异性,所提出的问题位于奇异性理论的核心(最近以很大的强度复兴)。该提案提出了一系列新的目标和新的方法,从概念上改变了总体情况。 申请人的研究将被纳入本科,研究生和博士后培训过程中。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

C. Clemens其他文献

Causal Models and Big Data Learning Analytics
因果模型和大数据学习分析
  • DOI:
    10.1007/978-3-662-44659-1_3
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Vivekanandan Kumar;Kinshuk;C. Clemens;Steven C. Harris
  • 通讯作者:
    Steven C. Harris
P194 Is there a difference in quality of life or costs between ulcerative colitis patients with a pouch or an ileostomy?
  • DOI:
    10.1016/s1873-9946(12)60214-1
  • 发表时间:
    2012-02-01
  • 期刊:
  • 影响因子:
  • 作者:
    M. Van der Valk;M.-J. Mangen;G. Dijkstra;A. van Bodegraven;H. Fidder;D. de Jong;M. Pierik;C.J. van der Woude;M. Romberg-Camps;C. Clemens;J. Jansen;P. van de Meeberg;N. Mahmmod;C. Ponsioen;C. Rogge-Wolf;R. Vermeijden;P. Siersema;M. Van Oijen;B. Oldenburg
  • 通讯作者:
    B. Oldenburg
A Photometric Redshift of z = 1.8{+0.4}{-0.3} for the AGILE GRB 080514B
AGILE GRB 080514B 的光度红移为 z = 1.8{ 0.4}{-0.3}
  • DOI:
    10.1051/0004-6361:200810736
  • 发表时间:
    2008
  • 期刊:
  • 影响因子:
    6.5
  • 作者:
    A. Rossi;A. U. Postigo;P. Ferrero;D. A. Kann;S. Klose;S. Schulze;J. Greiner;P. Schady;R. Filgas;E. Gonsalves;A. Yoldas;T. Krühler;G. Szokoly;A. Yoldas;P. Afonso;C. Clemens;J. Bloom;D. Perley;J. Fynbo;A. Castro‐Tirado;J. Gorosabel;P. Kubanek;P. Kubanek;A. Updike;D. Hartmann;A. Giuliani;S. Holland;L. Hanlon;M. Bremer;J. French;G. Melady;D. A. García
  • 通讯作者:
    D. A. García
The spatial distribution of selective attention assessed using the multifocal visual evoked potential
使用多焦点视觉诱发电位评估选择性注意的空间分布
  • DOI:
  • 发表时间:
    2002
  • 期刊:
  • 影响因子:
    1.8
  • 作者:
    W. Seiple;C. Clemens;V. Greenstein;K. Holopigian;Xian Zhang
  • 通讯作者:
    Xian Zhang
Intravitreal dexamethasone implant [Ozurdex] for the treatment of nonarteritic anterior ischaemic optic neuropathy
玻璃体内地塞米松植入物 [Ozurdex] 用于治疗非动脉炎性前部缺血性视神经病变
  • DOI:
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    1.4
  • 作者:
    F. Alten;C. Clemens;P. Heiduschka;N. Eter
  • 通讯作者:
    N. Eter

C. Clemens的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('C. Clemens', 18)}}的其他基金

Interactive Textbook
互动教材
  • 批准号:
    1245433
  • 财政年份:
    2013
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
The Cohomology Rings of Moduli Spaces
模空间的上同调环
  • 批准号:
    0432701
  • 财政年份:
    2004
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Families of Curves on Higher Dimensional Complex Projective Manifolds
高维复射影流形上的曲线族
  • 批准号:
    9970412
  • 财政年份:
    1999
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Undergraduate Mathematics at a Public Research University
公立研究型大学的本科数学
  • 批准号:
    9455960
  • 财政年份:
    1994
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Elementary Mathematics Through Teacher Partnership
通过教师合作开展小学数学
  • 批准号:
    9253227
  • 财政年份:
    1992
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Mathematical Sciences: Regional Geometry Institute
数学科学:区域几何研究所
  • 批准号:
    9012223
  • 财政年份:
    1991
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
U.S.-Japan Cooperative Research: Joint Research in Higher- Dimensional Geometry
美日合作研究:高维几何联合研究
  • 批准号:
    8814999
  • 财政年份:
    1989
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Mathematical Sciences: Research in the Deformation Theory ofSubvarieties of Higher Codimension
数学科学:高维子簇变形理论研究
  • 批准号:
    8901256
  • 财政年份:
    1989
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Research Project in Geometry
数学科学:几何研究项目
  • 批准号:
    8503765
  • 财政年份:
    1985
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Complex Geometry
复杂的几何形状
  • 批准号:
    8103384
  • 财政年份:
    1981
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant

相似国自然基金

基于Ricci流与Normal Cycle理论的非限制环境下三维人脸识别研究
  • 批准号:
    11401464
  • 批准年份:
    2014
  • 资助金额:
    22.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

NI: NEW NORMAL - NEar surface Warming in the INdian Ocean and Rainfall Monsoon Anomaly Links
NI:新常态——印度洋近地表变暖与降雨季风异常的联系
  • 批准号:
    NE/W003813/1
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Research Grant
Normal-Driven Surface Modeling
法线驱动曲面建模
  • 批准号:
    550760-2020
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    University Undergraduate Student Research Awards
BRIGE: Surface-Normal Plasmonic Modulator for Three-Dimensional Board-to-Board and Chip-to-Chip Optical Interconnects
BRIGE:用于三维板对板和芯片对芯片光学互连的表面法线等离子体调制器
  • 批准号:
    1342318
  • 财政年份:
    2013
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Research of normal surface singularities related to degeneration families of compact Riemann surfaces.
与紧致黎曼曲面退化族相关的法向曲面奇点研究。
  • 批准号:
    25400064
  • 财政年份:
    2013
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Analysis and assessment of residual stress components normal to the surface by X-ray diffraction techniques
通过 X 射线衍射技术分析和评估垂直于表面的残余应力分量
  • 批准号:
    231968279
  • 财政年份:
    2012
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Deep Proteomics of Normal Human Ovarian Surface Epithelium and Fallopian Tube Epi
正常人卵巢表面上皮和输卵管上皮的深层蛋白质组学
  • 批准号:
    8790827
  • 财政年份:
    2011
  • 资助金额:
    --
  • 项目类别:
Toward the fundamental inequality for normal surface singularities
法向表面奇点的基本不等式
  • 批准号:
    23654008
  • 财政年份:
    2011
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Challenging Exploratory Research
Assessment of differences in torso surface geometry in normal and scoliotic children
评估正常儿童和脊柱侧弯儿童躯干表面几何形状的差异
  • 批准号:
    367310-2008
  • 财政年份:
    2008
  • 资助金额:
    --
  • 项目类别:
    University Undergraduate Student Research Awards
Collaborative Research: Control of Atomic-Scale Friction by Normal Surface Oscillation
合作研究:通过法向表面振荡控制原子级摩擦
  • 批准号:
    0825613
  • 财政年份:
    2008
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Collaborative Research: Control of Atomic-Scale Friction by Normal Surface Oscillation
合作研究:通过法向表面振荡控制原子级摩擦
  • 批准号:
    0825502
  • 财政年份:
    2008
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了