FRG: Quantum Engineering of Metallic and Magnetic Nanostructures
FRG:金属和磁性纳米结构的量子工程
基本信息
- 批准号:0606485
- 负责人:
- 金额:$ 86.71万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2006
- 资助国家:美国
- 起止时间:2006-08-01 至 2009-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
TECHNICAL: Supported by NSF, which began in 1998, this FRG program developed a novel 'electronic growth' concept, stressing the vital importance of quantum size effects of the itinerant electrons in defining the stability as well as the likely growth mode of metallic thin films on semiconductor substrates. This new concept adds a substantial new facet to the phrase 'quantum engineering', in that quantum effects can now be exploited to precisely control the formation of metallic structures in the quantum regime. Capitalizing on PI's strengths and conceptual advances achieved so far in the broad areas of metallic and magnetic nanostructures, this project aims at pushing the research objectives in three new frontiers: (a) One-dimensional (1D) Electronic Growth and 1D Quantum Structures; (b) Subsurfactant Epitaxy and Quantum Growth of Hybrid Quantum Structures; and (c) Adsorption Energetics, Surface Mobility, and Chemical Reactivity on Quantum Films. In area (a), as 1D electronic systems exhibit sharp spikes in the density of states (DOS), as opposed to the staircase DOS of 2D systems, one expects much stronger quantum size effects. This can potentially be exploited for controlling the formation of 1D quantum structures. The interplay between the spin-resolved DOS and 1D quantum growth will be investigated. In addition, 1D superconductivity will be pushed toward the clean limit and thoroughly explored. In area (b), by integrating the concepts of 'subsurfactant epitaxy' and 'electronic growth', the PIs will fabricate hybrid quantum structures involving superconductors and dilute magnetic semiconductors. Success here will allow to explore the novel concept of charge and spin manipulation in such hybrid systems. In area (c) the PIs will investigate how the quantum stability influences three intimately related surface phenomena: adsorption energetics of atoms and molecules, their surface migration rates, and chemical reactivity on selected catalytic metal films. NON-TECHNICAL: Artificially engineered electronic systems in reduced dimensions occupy a central part in modern materials research. By developing advanced synthesis techniques, materials scientists strive to tailor novel electronic materials through dimensional control with the ultimate atomic precision. The driving force is the realization that, in reduced dimensions, quantum effects are bound to be more pronounced, and may result in intriguing new physical properties of technological significance. The educational goals are manifold. The first is to prepare the next generation of materials scientists in nanoscience and nanotechnology through research training involving postdoctoral researchers, graduate students, and undergraduates. Undergraduate students are recruited through the REU programs in our institutions. The next goal is to provide broader education through the development of a new curriculum and new courses in nanoscience and technology at the graduate and undergraduate levels at both institutions. This educational goal has been achieved successfully and will continue to be pushed to new fronts. Finally, in terms of K-12 nanoscience education, the PIs will recruit high school science teachers through the UTEACH program at Univ. of Texas. In addition, to introduce the concept of nanoscience at the most basic level the PIs also foster a partnership with the Austin Children's Museum to develop demonstration kits for nanoscience education for young children from K-5. Similar efforts have been and will continue to be made at the University of Tennessee. As a specific example, one PI, Zhang, has served as a volunteer science instructor in a local primary school for years and will continue on such efforts.
技术支持:在1998年开始的美国国家科学基金会的支持下,该联邦德国计划开发了一种新的“电子生长”概念,强调了巡游电子的量子尺寸效应在确定半导体衬底上金属薄膜的稳定性以及可能的生长模式方面的至关重要性。这个新概念为“量子工程”一词增添了一个实质性的新方面,因为现在可以利用量子效应来精确控制量子体系中金属结构的形成。本计画将利用PI在金属及磁性奈米结构等广泛领域的优势及概念上的进展,推动三个新领域的研究目标:(a)一维电子成长与一维量子结构;(B)次表面活性剂磊晶与混合量子结构的量子成长;(b)量子成长与量子成长。以及(c)量子膜上的吸附能学、表面迁移率和化学反应性。在区域(a)中,由于1D电子系统在态密度(DOS)中表现出尖锐的尖峰,与2D系统的阶梯DOS相反,人们预期更强的量子尺寸效应。这可以潜在地用于控制1D量子结构的形成。自旋分辨DOS和1D量子生长之间的相互作用将被调查。此外,一维超导将被推向干净的极限,并得到彻底的探索。在(B)区,通过整合“表面下外延”和“电子生长”的概念,PI将制造包括超导体和稀磁半导体的混合量子结构。这里的成功将允许探索在这样的混合系统中的电荷和自旋操纵的新概念。在区域(c)中,PI将研究量子稳定性如何影响三种密切相关的表面现象:原子和分子的吸附能,它们的表面迁移率,以及在选定的催化金属膜上的化学反应性。非技术性:在现代材料研究中,以降低尺寸的方式设计的电子系统占据了核心部分。通过开发先进的合成技术,材料科学家们努力通过尺寸控制来定制具有最终原子精度的新型电子材料。驱动力是认识到,在降低的维度中,量子效应必然会更加明显,并可能导致具有技术意义的有趣的新物理特性。教育目标是多方面的。第一个是通过涉及博士后研究人员,研究生和本科生的研究培训,为纳米科学和纳米技术的下一代材料科学家做好准备。本科生通过我们机构的REU计划招募。下一个目标是通过在这两个机构的研究生和本科生阶段开发纳米科学和技术的新课程和新课程,提供更广泛的教育。这一教育目标已经成功实现,并将继续推向新的前沿。最后,在K-12纳米科学教育方面,PI将通过德克萨斯大学的UTEACH计划招募高中科学教师。此外,为了在最基本的层面上介绍纳米科学的概念,PI还与奥斯汀儿童博物馆建立了伙伴关系,为K-5的幼儿开发纳米科学教育演示套件。田纳西大学已经并将继续作出类似的努力。例如,一位名叫张的PI多年来一直在当地一所小学担任志愿科学指导员,并将继续这样的努力。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Chih-Kang Shih其他文献
Monolayer 1T-NbSe2 as a 2D-correlated magnetic insulator
- DOI:
DOI: 10.1126/sciadv.abi6339 - 发表时间:
2021 - 期刊:
- 影响因子:
- 作者:
Mengke Liu;Joshua Leveillee;Shuangzan Lu;Jia Yu;Hyunsue Kim;Cheng Tian;Youguo Shi;Keji Lai;Chendong Zhang;Feliciano Giustino;Chih-Kang Shih - 通讯作者:
Chih-Kang Shih
Tuning of Two-Dimensional Plasmon–Exciton Coupling in Full Parameter Space: A Polaritonic Non-Hermitian System
全参数空间中二维等离子体激子耦合的调谐:极化非厄米系统
- DOI:
10.1021/acs.nanolett.1c00198 - 发表时间:
2021 - 期刊:
- 影响因子:10.8
- 作者:
Yungang Sang;Chun-Yuan Wang;Soniya S. Raja;Chang-Wei Cheng;Chiao-Tzu Huang;Chun-An Chen;Xin-Quan Zhang;Hyeyoung Ahn;Chih-Kang Shih;Yi-Hsien Lee;Jinwei Shi;Shangjr Gwo - 通讯作者:
Shangjr Gwo
Excitons in semiconductor moiré superlattices
半导体莫尔超晶格中的激子
- DOI:
10.1038/s41565-021-01068-y - 发表时间:
2022-03-14 - 期刊:
- 影响因子:34.900
- 作者:
Di Huang;Junho Choi;Chih-Kang Shih;Xiaoqin Li - 通讯作者:
Xiaoqin Li
Robust supermoiré pattern in large-angle single-twist bilayers
大角度单扭曲双层膜中的稳健超级莫尔图案
- DOI:
10.1038/s41567-025-02914-9 - 发表时间:
2025-05-16 - 期刊:
- 影响因子:18.400
- 作者:
Yanxing Li;Chuqiao Shi;Fan Zhang;Xiaohui Liu;Yuan Xue;Viet-Anh Ha;Qiang Gao;Chengye Dong;Yu-Chuan Lin;Luke N. Holtzman;Nicolás Morales-Durán;Hyunsue Kim;Yi Jiang;Madisen Holbrook;James Hone;Katayun Barmak;Joshua A. Robinson;Xiaoqin Li;Feliciano Giustino;Eslam Khalaf;Yimo Han;Chih-Kang Shih - 通讯作者:
Chih-Kang Shih
Experimental signature of layer skyrmions and implications for band topology in twisted WSe2 bilayers
层状斯格明子的实验特征及其对扭曲 WSe2 双层膜能带拓扑的影响
- DOI:
10.1038/s41567-025-02876-y - 发表时间:
2025-05-01 - 期刊:
- 影响因子:18.400
- 作者:
Fan Zhang;Nicolás Morales-Durán;Yanxing Li;Wang Yao;Jung-Jung Su;Yu-Chuan Lin;Chengye Dong;Xiaohui Liu;Fu-Xiang Rikudo Chen;Hyunsue Kim;Kenji Watanabe;Takashi Taniguchi;Xiaoqin Li;Joshua A. Robinson;Allan H. Macdonald;Chih-Kang Shih - 通讯作者:
Chih-Kang Shih
Chih-Kang Shih的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Chih-Kang Shih', 18)}}的其他基金
Tailoring and probing electronic/magnetic structure of engineered magnetic topological insulators
工程磁拓扑绝缘体的电子/磁结构的定制和探测
- 批准号:
2219610 - 财政年份:2022
- 资助金额:
$ 86.71万 - 项目类别:
Standard Grant
Tailoring electronic and photonic properties of van der Waals semiconductor heterostructures
定制范德华半导体异质结构的电子和光子特性
- 批准号:
1808751 - 财政年份:2018
- 资助金额:
$ 86.71万 - 项目类别:
Standard Grant
Manipulating 2D Superconductivity through atomic scale control of boundary conditions
通过边界条件的原子尺度控制来操纵二维超导
- 批准号:
1506678 - 财政年份:2015
- 资助金额:
$ 86.71万 - 项目类别:
Standard Grant
Advanced Accelerating Structures Based on Metamaterials
基于超材料的先进加速结构
- 批准号:
1415547 - 财政年份:2014
- 资助金额:
$ 86.71万 - 项目类别:
Standard Grant
FRG: Quantum Tuning of Superconducting, Plasmonic, and Chemical Properties of Metallic Nanostructures
FRG:金属纳米结构的超导、等离子体和化学性质的量子调谐
- 批准号:
0906025 - 财政年份:2009
- 资助金额:
$ 86.71万 - 项目类别:
Continuing Grant
IGERT: Atomic and Molecular Imaging of Interfaces/Defects in Electronic, Spintronic, and Organic/Inorganic Materials
IGERT:电子、自旋电子和有机/无机材料中界面/缺陷的原子和分子成像
- 批准号:
0549417 - 财政年份:2006
- 资助金额:
$ 86.71万 - 项目类别:
Continuing Grant
FRG-Quantum Engineering of Metallic and Magnetic Nanostructures
FRG-金属和磁性纳米结构的量子工程
- 批准号:
0306239 - 财政年份:2003
- 资助金额:
$ 86.71万 - 项目类别:
Continuing Grant
NIRT: FRG: Collective and Quasiparticle Properties of Nanocrystals and Nano-Arrays
NIRT:FRG:纳米晶体和纳米阵列的集体和准粒子特性
- 批准号:
0210383 - 财政年份:2002
- 资助金额:
$ 86.71万 - 项目类别:
Continuing Grant
FRG: Quantum Engineering of Metallic Nanostructures
FRG:金属纳米结构的量子工程
- 批准号:
0071893 - 财政年份:2000
- 资助金额:
$ 86.71万 - 项目类别:
Continuing Grant
Cross-Sectional Scanning Probe Microscopy/Spectroscopy of Semiconductor Heterostructures
半导体异质结构的横截面扫描探针显微镜/光谱学
- 批准号:
9402938 - 财政年份:1994
- 资助金额:
$ 86.71万 - 项目类别:
Continuing Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Simulation and certification of the ground state of many-body systems on quantum simulators
- 批准号:
- 批准年份:2020
- 资助金额:40 万元
- 项目类别:
Mapping Quantum Chromodynamics by Nuclear Collisions at High and Moderate Energies
- 批准号:11875153
- 批准年份:2018
- 资助金额:60.0 万元
- 项目类别:面上项目
相似海外基金
Engineering Future Quantum Technologies in Low-Dimensional Systems
低维系统中的未来量子技术工程
- 批准号:
MR/X006077/1 - 财政年份:2024
- 资助金额:
$ 86.71万 - 项目类别:
Fellowship
Nonlinear Quantum Control Engineering
非线性量子控制工程
- 批准号:
DP240101494 - 财政年份:2024
- 资助金额:
$ 86.71万 - 项目类别:
Discovery Projects
Travel: NSF Student Travel Grant for 2024 IEEE International Conference on Quantum Computing and Engineering (QCE)
旅费:2024 年 IEEE 国际量子计算与工程会议 (QCE) 的 NSF 学生旅费补助金
- 批准号:
2417602 - 财政年份:2024
- 资助金额:
$ 86.71万 - 项目类别:
Standard Grant
Conference: Workshop on Quantum Engineering Infrastructure II
会议:量子工程基础设施研讨会II
- 批准号:
2405015 - 财政年份:2024
- 资助金额:
$ 86.71万 - 项目类别:
Standard Grant
Giant modulation of the speed of nonlinear quantum phase transitions in strongly correlated materials via chemical bonding force engineering and its application to emergent neuromorphic devices
通过化学键合力工程对强相关材料中非线性量子相变速度的巨大调制及其在新兴神经形态器件中的应用
- 批准号:
23K03919 - 财政年份:2023
- 资助金额:
$ 86.71万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
ExpandQISE: Track 2: Leveraging synthetic degrees of freedom for quantum state engineering in photonic chips
ExpandQISE:轨道 2:利用光子芯片中量子态工程的合成自由度
- 批准号:
2328993 - 财政年份:2023
- 资助金额:
$ 86.71万 - 项目类别:
Continuing Grant
Property Testing for Quantum Engineering (ProTeQE)
量子工程性能测试 (ProTeQE)
- 批准号:
EP/X018180/1 - 财政年份:2023
- 资助金额:
$ 86.71万 - 项目类别:
Research Grant
QuSeC-TAQS: Noise Engineering For Enhanced Quantum Sensing
QuSeC-TAQS:增强量子传感的噪声工程
- 批准号:
2326837 - 财政年份:2023
- 资助金额:
$ 86.71万 - 项目类别:
Standard Grant
Property Testing for Quantum Engineering
量子工程的性能测试
- 批准号:
2879732 - 财政年份:2023
- 资助金额:
$ 86.71万 - 项目类别:
Studentship
Collaborative Research: Education Landscape for Quantum Information Science and Engineering: Guiding Education Innovation to Support Quantum Career Paths
合作研究:量子信息科学与工程的教育格局:指导教育创新以支持量子职业道路
- 批准号:
2333073 - 财政年份:2023
- 资助金额:
$ 86.71万 - 项目类别:
Standard Grant