FRG: Quantum Tuning of Superconducting, Plasmonic, and Chemical Properties of Metallic Nanostructures

FRG:金属纳米结构的超导、等离子体和化学性质的量子调谐

基本信息

  • 批准号:
    0906025
  • 负责人:
  • 金额:
    $ 99万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2009
  • 资助国家:
    美国
  • 起止时间:
    2009-09-01 至 2013-08-31
  • 项目状态:
    已结题

项目摘要

TECHNICAL SUMMARY:Elegantly fabricated functional materials with reduced dimensions occupy a central stage of modern materials research. By uncovering fundamental enabling concepts in growth science and developing advanced synthesis techniques, materials scientists strive to tailor novel materials through dimensional control with the ultimate atomic precision. This scientific enterprise is driven by the realization that, by reducing the dimensionality of the systems, quantum effects within the systems are tuned to be more pronounced, potentially resulting in emergent physical properties of technological significance. This FRG program pioneered in the formulation and development of an innovative concept, termed "electronic growth", stressing the vital importance of quantum mechanically confined motion of the itinerant electrons in defining the overall stability as well as the preferred growth mode of a variety of metal films and nanostructures on different substrates. The far-reaching impact of this new concept lies in its enabling role: It provides the basis on which quantum size effects can be exploited to precisely control the formation of metallic structures; such structures formed in the quantum regime, in turn, are bound to serve as appealing platforms for elucidating intriguing quantum properties. The proposed research emphasis in the new phase will focus on exploration of new frontiers of quantum growth. The central objectives will be to gain property tunability of the metal systems tailored in the quantum regime, developed around three thrusts, each of profound fundamental and practical importance: (a) Superconductivity in Low Dimensional Electron Systems; (b) Tuning Plasmonic Properties in the in the Quantum Regime; and (c) Formation and Catalytic Properties of Quantum Metal Alloys.NON-TECHNICAL SUMMARY:This proposal is aimed at creating an inter-disciplinary research program focusing on the research area of metallic nanostructures where the physical properties are dominated by quantum size effects. The ultimate research goals are to use atomic scale control of materials synthesis to tune the physical properties in the quantum regime. The proposal focuses on the integration research and education to train internationally competitive students and postdocs. This setting is provided through the unique partnership of this FRG team with the Oak Ridge National Laboratory (ORNL). Together, UT-Austin, UT-Knoxville, and ORNL provide a closely collaborative, inter-disciplinary research/educational platform for next generation of US leaders in materials research. The investigators are also committed to educational outreach to a broader audience at all levels. This will be accomplished with multi-prone approaches including (a) offering special topic courses which enrich the curriculum in Nanoscience and Technology that are also accessible to broader undergraduate students, (b) enhancing the outreach program of Summer Academy of Nanoscience and Nanotechnology for State-wide high school teachers and students in Texas, and (c) targeting high school students who are participating in the Tennessee Governor's school for the Sciences and Engineering by offering them research training. Finally, this program is fully committed to broadening participation of under-represented groups in graduate research with specific goals of increasing the percentage of graduate students that are woman or/and of Hispanic background.
技术摘要:精心制作的尺寸减小的功能材料占据了现代材料研究的中心舞台。通过揭示生长科学的基本概念和开发先进的合成技术,材料科学家努力通过具有终极原子精度的尺寸控制来定制新型材料。这一科学事业的驱动力是认识到,通过降低系统的维度,系统内的量子效应会变得更加明显,从而可能产生具有技术意义的新兴物理特性。该FRG项目开创了“电子生长”创新概念的制定和发展,强调了量子力学限制的巡回电子运动在定义整体稳定性以及不同基底上各种金属薄膜和纳米结构的首选生长模式方面的至关重要性。这一新概念的深远影响在于它的推动作用:它为利用量子尺寸效应精确控制金属结构的形成提供了基础;反过来,在量子态中形成的这种结构必将成为阐明有趣的量子特性的有吸引力的平台。新阶段拟议的研究重点将集中在探索量子增长的新领域。中心目标是获得在量子体系中定制的金属系统的性能可调性,围绕三个主旨开发,每个主旨都具有深远的基础和实际重要性:(a)低维电子系统中的超导性; (b) 调整量子体系中的等离子体特性; (c) 量子金属合金的形成和催化性能。非技术摘要:该提案旨在创建一个跨学科研究计划,重点关注金属纳米结构的研究领域,其中物理性能由量子尺寸效应主导。最终的研究目标是利用材料合成的原子尺度控制来调整量子体系中的物理性质。该提案的重点是研究和教育一体化,培养具有国际竞争力的学生和博士后。这一设置是通过 FRG 团队与橡树岭国家实验室 (ORNL) 的独特合作关系提供的。德州大学奥斯汀分校、德州大学诺克斯维尔分校和橡树岭国家实验室共同为美国下一代材料研究领域的领导者提供了一个密切合作的跨学科研究/教育平台。调查人员还致力于向各个级别的更广泛受众进行教育推广。这将通过多种方法来实现,包括(a)提供丰富纳米科学和技术课程的专题课程,这些课程也可供更广泛的本科生学习,(b)加强针对德克萨斯州全州高中教师和学生的纳米科学和纳米技术夏季学院的外展计划,以及(c)针对参加田纳西州州长科学学院的高中生 和工程,为他们提供研究培训。最后,该计划完全致力于扩大代表性不足的群体对研究生研究的参与,其具体目标是增加女性或/和西班牙背景研究生的比例。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Chih-Kang Shih其他文献

Monolayer 1T-NbSe2 as a 2D-correlated magnetic insulator
  • DOI:
    DOI: 10.1126/sciadv.abi6339
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
  • 作者:
    Mengke Liu;Joshua Leveillee;Shuangzan Lu;Jia Yu;Hyunsue Kim;Cheng Tian;Youguo Shi;Keji Lai;Chendong Zhang;Feliciano Giustino;Chih-Kang Shih
  • 通讯作者:
    Chih-Kang Shih
Tuning of Two-Dimensional Plasmon–Exciton Coupling in Full Parameter Space: A Polaritonic Non-Hermitian System
全参数空间中二维等离子体激子耦合的调谐:极化非厄米系统
  • DOI:
    10.1021/acs.nanolett.1c00198
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    10.8
  • 作者:
    Yungang Sang;Chun-Yuan Wang;Soniya S. Raja;Chang-Wei Cheng;Chiao-Tzu Huang;Chun-An Chen;Xin-Quan Zhang;Hyeyoung Ahn;Chih-Kang Shih;Yi-Hsien Lee;Jinwei Shi;Shangjr Gwo
  • 通讯作者:
    Shangjr Gwo
Excitons in semiconductor moiré superlattices
半导体莫尔超晶格中的激子
  • DOI:
    10.1038/s41565-021-01068-y
  • 发表时间:
    2022-03-14
  • 期刊:
  • 影响因子:
    34.900
  • 作者:
    Di Huang;Junho Choi;Chih-Kang Shih;Xiaoqin Li
  • 通讯作者:
    Xiaoqin Li
Robust supermoiré pattern in large-angle single-twist bilayers
大角度单扭曲双层膜中的稳健超级莫尔图案
  • DOI:
    10.1038/s41567-025-02914-9
  • 发表时间:
    2025-05-16
  • 期刊:
  • 影响因子:
    18.400
  • 作者:
    Yanxing Li;Chuqiao Shi;Fan Zhang;Xiaohui Liu;Yuan Xue;Viet-Anh Ha;Qiang Gao;Chengye Dong;Yu-Chuan Lin;Luke N. Holtzman;Nicolás Morales-Durán;Hyunsue Kim;Yi Jiang;Madisen Holbrook;James Hone;Katayun Barmak;Joshua A. Robinson;Xiaoqin Li;Feliciano Giustino;Eslam Khalaf;Yimo Han;Chih-Kang Shih
  • 通讯作者:
    Chih-Kang Shih
Experimental signature of layer skyrmions and implications for band topology in twisted WSe2 bilayers
层状斯格明子的实验特征及其对扭曲 WSe2 双层膜能带拓扑的影响
  • DOI:
    10.1038/s41567-025-02876-y
  • 发表时间:
    2025-05-01
  • 期刊:
  • 影响因子:
    18.400
  • 作者:
    Fan Zhang;Nicolás Morales-Durán;Yanxing Li;Wang Yao;Jung-Jung Su;Yu-Chuan Lin;Chengye Dong;Xiaohui Liu;Fu-Xiang Rikudo Chen;Hyunsue Kim;Kenji Watanabe;Takashi Taniguchi;Xiaoqin Li;Joshua A. Robinson;Allan H. Macdonald;Chih-Kang Shih
  • 通讯作者:
    Chih-Kang Shih

Chih-Kang Shih的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Chih-Kang Shih', 18)}}的其他基金

Tailoring and probing electronic/magnetic structure of engineered magnetic topological insulators
工程磁拓扑绝缘体的电子/磁结构的定制和探测
  • 批准号:
    2219610
  • 财政年份:
    2022
  • 资助金额:
    $ 99万
  • 项目类别:
    Standard Grant
Tailoring electronic and photonic properties of van der Waals semiconductor heterostructures
定制范德华半导体异质结构的电子和光子特性
  • 批准号:
    1808751
  • 财政年份:
    2018
  • 资助金额:
    $ 99万
  • 项目类别:
    Standard Grant
Manipulating 2D Superconductivity through atomic scale control of boundary conditions
通过边界条件的原子尺度控制来操纵二维超导
  • 批准号:
    1506678
  • 财政年份:
    2015
  • 资助金额:
    $ 99万
  • 项目类别:
    Standard Grant
Advanced Accelerating Structures Based on Metamaterials
基于超材料的先进加速结构
  • 批准号:
    1415547
  • 财政年份:
    2014
  • 资助金额:
    $ 99万
  • 项目类别:
    Standard Grant
IGERT: Atomic and Molecular Imaging of Interfaces/Defects in Electronic, Spintronic, and Organic/Inorganic Materials
IGERT:电子、自旋电子和有机/无机材料中界面/缺陷的原子和分子成像
  • 批准号:
    0549417
  • 财政年份:
    2006
  • 资助金额:
    $ 99万
  • 项目类别:
    Continuing Grant
FRG: Quantum Engineering of Metallic and Magnetic Nanostructures
FRG:金属和磁性纳米结构的量子工程
  • 批准号:
    0606485
  • 财政年份:
    2006
  • 资助金额:
    $ 99万
  • 项目类别:
    Continuing Grant
FRG-Quantum Engineering of Metallic and Magnetic Nanostructures
FRG-金属和磁性纳米结构的量子工程
  • 批准号:
    0306239
  • 财政年份:
    2003
  • 资助金额:
    $ 99万
  • 项目类别:
    Continuing Grant
NIRT: FRG: Collective and Quasiparticle Properties of Nanocrystals and Nano-Arrays
NIRT:FRG:纳米晶体和纳米阵列的集体和准粒子特性
  • 批准号:
    0210383
  • 财政年份:
    2002
  • 资助金额:
    $ 99万
  • 项目类别:
    Continuing Grant
FRG: Quantum Engineering of Metallic Nanostructures
FRG:金属纳米结构的量子工程
  • 批准号:
    0071893
  • 财政年份:
    2000
  • 资助金额:
    $ 99万
  • 项目类别:
    Continuing Grant
Cross-Sectional Scanning Probe Microscopy/Spectroscopy of Semiconductor Heterostructures
半导体异质结构的横截面扫描探针显微镜/光谱学
  • 批准号:
    9402938
  • 财政年份:
    1994
  • 资助金额:
    $ 99万
  • 项目类别:
    Continuing Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Simulation and certification of the ground state of many-body systems on quantum simulators
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    40 万元
  • 项目类别:
Mapping Quantum Chromodynamics by Nuclear Collisions at High and Moderate Energies
  • 批准号:
    11875153
  • 批准年份:
    2018
  • 资助金额:
    60.0 万元
  • 项目类别:
    面上项目

相似海外基金

Scalable and Automated Tuning of Spin-based Quantum Computer Architectures
基于自旋的量子计算机架构的可扩展和自动调整
  • 批准号:
    2887634
  • 财政年份:
    2024
  • 资助金额:
    $ 99万
  • 项目类别:
    Studentship
Efficient tuning of quantum devices using machine learning
使用机器学习有效调整量子器件
  • 批准号:
    2886876
  • 财政年份:
    2023
  • 资助金额:
    $ 99万
  • 项目类别:
    Studentship
Electronic phase tuning in organic two-dimensional hole-gas system and organic quantum electronics
有机二维空穴气体系统中的电子相位调谐和有机量子电子学
  • 批准号:
    22H04959
  • 财政年份:
    2022
  • 资助金额:
    $ 99万
  • 项目类别:
    Grant-in-Aid for Scientific Research (S)
Enabling large-scale silicon spin qubit platform using memristor-based neuromorphic circuits for quantum dots auto-tuning
使用基于忆阻器的神经形态电路实现量子点自动调节的大规模硅自旋量子位平台
  • 批准号:
    RGPIN-2019-06183
  • 财政年份:
    2022
  • 资助金额:
    $ 99万
  • 项目类别:
    Discovery Grants Program - Individual
CMOS-OxRAM integrated circuits for low-power AI and cryogenic quantum dot auto-tuning
用于低功耗人工智能和低温量子点自动调谐的 CMOS-OxRAM 集成电路
  • 批准号:
    580722-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 99万
  • 项目类别:
    Alliance Grants
Enabling large-scale silicon spin qubit platform using memristor-based neuromorphic circuits for quantum dots auto-tuning
使用基于忆阻器的神经形态电路实现量子点自动调节的大规模硅自旋量子位平台
  • 批准号:
    RGPIN-2019-06183
  • 财政年份:
    2021
  • 资助金额:
    $ 99万
  • 项目类别:
    Discovery Grants Program - Individual
CAREER: TUNING QUANTUM STATES OF MAGNETIC TOPOLOGICAL SYSTEMS WITH PRESSURE
职业:利用压力调节磁拓扑系统的量子态
  • 批准号:
    2045760
  • 财政年份:
    2021
  • 资助金额:
    $ 99万
  • 项目类别:
    Continuing Grant
Strain-tuning electronic structure and quantum many-body interactions
应变调节电子结构和量子多体相互作用
  • 批准号:
    EP/T02108X/1
  • 财政年份:
    2020
  • 资助金额:
    $ 99万
  • 项目类别:
    Research Grant
Enabling large-scale silicon spin qubit platform using memristor-based neuromorphic circuits for quantum dots auto-tuning
使用基于忆阻器的神经形态电路实现量子点自动调节的大规模硅自旋量子位平台
  • 批准号:
    RGPIN-2019-06183
  • 财政年份:
    2020
  • 资助金额:
    $ 99万
  • 项目类别:
    Discovery Grants Program - Individual
Enabling large-scale silicon spin qubit platform using memristor-based neuromorphic circuits for quantum dots auto-tuning
使用基于忆阻器的神经形态电路实现量子点自动调节的大规模硅自旋量子位平台
  • 批准号:
    RGPIN-2019-06183
  • 财政年份:
    2019
  • 资助金额:
    $ 99万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了