Stability of Traveling Waves
行波的稳定性
基本信息
- 批准号:0607721
- 负责人:
- 金额:$ 15.22万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2006
- 资助国家:美国
- 起止时间:2006-08-01 至 2009-10-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
HumpherysDMS-0607721 This work focuses on the stability theory of travelingwaves, with an emphasis on front propagation arising in thecontinuum and kinetic theories of compressible flow. This classof problems models key real-world phenomena such as shock wavesin a viscous gas or plasma, detonations in a reactive gas, andthe propagation of phase boundaries in a viscous fluid. Theinvestigator studies long-standing open questions about thestability of traveling waves in these areas by exploring theeffects of key structural features, such as symmetrizability andgenuine coupling. Through an exhaustive numerical study, whichincludes Evans function computation, he seeks a betterunderstanding of the stability properties of traveling waves inthese important problem areas, particularly in regimes whereanalytical methods currently provide little information. Inconnection with recent work with his collaborators, theinvestigator develops better algorithms for Evans functioncomputation. An additional benefit of this work is the continueddevelopment of the investigator's freely available numericalEvans function toolbox, which also allows for the exploration ofsystems beyond our immediate interest. Moreover, theinvestigator uses this package as an investigative tool instudent-focused undergraduate research. Traveling waves are ubiquitous in nature, occurringeverywhere from population models in ecology to the propagationof tsunamis in the oceanic sciences, or from shock waves of asupersonic jet to the flickering pulses of light in a fiber opticcable. The stability properties of these traveling wavesdescribe the degree to which they can persist in the presence ofdisturbances. This work focuses on the mathematics of travelingwaves and develops computational methods for exploring thestability properties of waves in a myriad of areas in the pureand applied sciences.
HumpherysDMS-0607721 本文着重于行波的稳定性理论,着重于连续体中的波前传播和可压缩流的动力学理论。 这类问题模拟了关键的现实世界现象,如粘性气体或等离子体中的冲击波,反应气体中的爆炸,以及粘性流体中相边界的传播。 研究人员通过探索关键结构特征(如对称性和真正的耦合)的影响,研究了这些领域中关于行波稳定性的长期未决问题。 通过详尽的数值研究,其中包括埃文斯函数计算,他寻求更好地了解行波在这些重要问题领域的稳定性,特别是在政权的分析方法目前提供的信息很少。 在最近的工作与他的合作者,调查员开发更好的算法埃文斯函数计算。 这项工作的另一个好处是继续发展的调查人员的免费提供numericalEvans函数工具箱,这也允许探索的系统超出了我们的直接利益。 此外,研究者使用这个包作为一个调查工具,在学生为中心的本科研究。 行波在自然界中无处不在,从生态学中的种群模型到海洋科学中海啸的传播,或者从超音速射流的冲击波到光纤电缆中闪烁的光脉冲,到处都有行波的存在。 这些行波的稳定性描述了它们在干扰存在下能够持续的程度。 这项工作的重点是数学的行波和开发计算方法,探索稳定性的波在无数领域的纯科学和应用科学。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jeffrey Humpherys其他文献
On the shock wave spectrum for isentropic gas dynamics with capillarity
- DOI:
10.1016/j.jde.2008.07.028 - 发表时间:
2009-04-01 - 期刊:
- 影响因子:
- 作者:
Jeffrey Humpherys - 通讯作者:
Jeffrey Humpherys
Stability of Viscous Weak Detonation Waves for Majda’s Model
- DOI:
10.1007/s10884-015-9440-3 - 发表时间:
2015-03-13 - 期刊:
- 影响因子:1.300
- 作者:
Jeffrey Hendricks;Jeffrey Humpherys;Gregory Lyng;Kevin Zumbrun - 通讯作者:
Kevin Zumbrun
Stability of viscous detonations for Majda’s model
- DOI:
10.1016/j.physd.2013.06.001 - 发表时间:
2013-09-15 - 期刊:
- 影响因子:
- 作者:
Jeffrey Humpherys;Gregory Lyng;Kevin Zumbrun - 通讯作者:
Kevin Zumbrun
Spectral Stability of Noncharacteristic Isentropic Navier–Stokes Boundary Layers
- DOI:
10.1007/s00205-008-0153-1 - 发表时间:
2008-07-22 - 期刊:
- 影响因子:2.400
- 作者:
Nicola Costanzino;Jeffrey Humpherys;Toan Nguyen;Kevin Zumbrun - 通讯作者:
Kevin Zumbrun
Stability of Isentropic Navier–Stokes Shocks in the High-Mach Number Limit
- DOI:
10.1007/s00220-009-0885-2 - 发表时间:
2009-09-02 - 期刊:
- 影响因子:2.600
- 作者:
Jeffrey Humpherys;Olivier Lafitte;Kevin Zumbrun - 通讯作者:
Kevin Zumbrun
Jeffrey Humpherys的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jeffrey Humpherys', 18)}}的其他基金
TUES: A New Curriculum in Applied and Computational Mathematics
TUES:应用与计算数学新课程
- 批准号:
1323785 - 财政年份:2013
- 资助金额:
$ 15.22万 - 项目类别:
Standard Grant
CAREER: Interdisciplinary Mentoring Program in Analysis, Computation, and Theory (IMPACT)
职业:分析、计算和理论跨学科指导计划(IMPACT)
- 批准号:
0847074 - 财政年份:2009
- 资助金额:
$ 15.22万 - 项目类别:
Standard Grant
CSUMS: Information and Decision Algorithm Laboratories (IDeA Labs)
CSUMS:信息与决策算法实验室(IDeA Labs)
- 批准号:
0639328 - 财政年份:2006
- 资助金额:
$ 15.22万 - 项目类别:
Continuing Grant
相似海外基金
CRCNS Research Proposal: Modeling traveling waves in the human cortex
CRCNS 研究提案:模拟人类皮层中的行波
- 批准号:
2309174 - 财政年份:2023
- 资助金额:
$ 15.22万 - 项目类别:
Continuing Grant
Traveling waves in neocortical circuits: Mechanisms, computational roles in sensory processing, and impact on sensory perception
新皮质回路中的行波:感觉处理中的机制、计算作用以及对感觉知觉的影响
- 批准号:
10655101 - 财政年份:2023
- 资助金额:
$ 15.22万 - 项目类别:
Analysis of Free Boundaries: Contact Lines and Viscous Traveling Waves
自由边界分析:接触线和粘性行波
- 批准号:
2204912 - 财政年份:2022
- 资助金额:
$ 15.22万 - 项目类别:
Standard Grant
Sharp traveling waves for degenerate diffusion equations with delay
具有延迟的简并扩散方程的尖锐行波
- 批准号:
RGPIN-2022-03374 - 财政年份:2022
- 资助金额:
$ 15.22万 - 项目类别:
Discovery Grants Program - Individual
Non-monotone traveling waves for reaction-diffusion equations with delay
具有延迟的反应扩散方程的非单调行波
- 批准号:
RGPIN-2016-03816 - 财政年份:2021
- 资助金额:
$ 15.22万 - 项目类别:
Discovery Grants Program - Individual
Non-monotone traveling waves for reaction-diffusion equations with delay
具有延迟的反应扩散方程的非单调行波
- 批准号:
RGPIN-2016-03816 - 财政年份:2020
- 资助金额:
$ 15.22万 - 项目类别:
Discovery Grants Program - Individual
Non-monotone traveling waves for reaction-diffusion equations with delay
具有延迟的反应扩散方程的非单调行波
- 批准号:
RGPIN-2016-03816 - 财政年份:2019
- 资助金额:
$ 15.22万 - 项目类别:
Discovery Grants Program - Individual
Compact traveling waves for mean-curvature flow with driving force
带驱动力的平均曲率流的紧凑行波
- 批准号:
18K13458 - 财政年份:2018
- 资助金额:
$ 15.22万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Non-monotone traveling waves for reaction-diffusion equations with delay
具有延迟的反应扩散方程的非单调行波
- 批准号:
RGPIN-2016-03816 - 财政年份:2018
- 资助金额:
$ 15.22万 - 项目类别:
Discovery Grants Program - Individual
Soft Continuous Track Mechanism That Enables Omnidirectional Motion by Generating Traveling Waves on a Track
软连续轨道机构,通过在轨道上产生行波来实现全向运动
- 批准号:
19K21061 - 财政年份:2018
- 资助金额:
$ 15.22万 - 项目类别:
Grant-in-Aid for Research Activity Start-up














{{item.name}}会员




