Some Problems on Analyses and Applications of Centroidal Voronoi Tessellations
质心Voronoi曲面细分分析及应用的几个问题
基本信息
- 批准号:0609575
- 负责人:
- 金额:$ 12.28万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2006
- 资助国家:美国
- 起止时间:2006-08-01 至 2009-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Centroidal Voronoi tessellations (CVTs) are special Voronoi tessellations having the property that the generators of the Voronoi tessellation are also the centers of mass, with respect to a given density function, of the corresponding Voronoi cells. CVTs have been very usedful in a wide range of research fields, including image and data analysis, vector quantization, computer graphics, resource optimization, cell biology, numerical solution of partial differential equations, optimal control, mobile sensing networks, and so on. This project aims at further analysis on CVTs' properties and algorithms, and the broadening of applications for which CVTs and related concepts can be used as a basis for more efficient and accurate treatments.In the theoretical aspects, the convergence and acceleration schemes of popular algorithms for computing CVTs and generalization of CVTs in other metric settings and with hierarchical structures will be studied. In the application aspects, the investigator will develop and implement robust CVT-based mesh generation and optimization algorithms, and then incorporate them in adaptive computations of numerical partial differential equations using finite element methods or finite volume methods, and in the solution of some challenging physical problems on the sphere and other surfaces such as geophysical flows, in light of the high-quality CVT-based surface meshing.Also considered will be the cortical surface-flattening techniques based on the CVT methodology, which are very important to brain-imaging data analysis, including quantitative mapping of functional variability and construction of probabilistic brain-surface atlases. The proposed research will offer new insight into a number of outstanding theoretical issues and lead to renovation of computational algorithms for diverse important applications in science and engineering. The software resulting from this project will be actively disseminated, so that it can be used not only by researchers in the scientific computing area, but also by practitioners in a much broader community for application to problems in interdisciplinary sciences.
质心Voronoi曲面细分(CVT)是特殊的Voronoi曲面细分,其具有这样的性质:相对于给定的密度函数,Voronoi曲面细分的生成元也是对应的Voronoi单元的质心。 CVTs在图像和数据分析、矢量量化、计算机图形学、资源优化、细胞生物学、偏微分方程数值解、最优控制、移动的传感网络等领域有着广泛的应用。以及拓宽应用,其中CVT和相关概念可用作更有效和更准确治疗的基础。在理论方面,将研究用于计算CVTs的流行算法的收敛和加速方案以及在其他度量设置和具有分层结构的CVTs的推广。 在应用方面,研究人员将开发和实现强大的基于CVT的网格生成和优化算法,然后将其纳入使用有限元方法或有限体积方法的数值偏微分方程的自适应计算中,并解决球体和其他表面上的一些具有挑战性的物理问题,如地球物理流动,同时,还将考虑基于CVT方法的皮层表面平坦化技术,这对于脑成像数据分析,包括功能变异性的定量映射和概率脑表面图谱的构建都是非常重要的。 拟议的研究将提供新的见解,一些突出的理论问题,并导致计算算法在科学和工程中的各种重要应用的革新。 将积极传播这一项目产生的软件,以便不仅科学计算领域的研究人员可以使用,而且更广泛的社区的从业人员也可以使用,将其应用于解决跨学科科学的问题。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Lili Ju其他文献
Conservative explicit local time-stepping schemes for the shallow water equations
浅水方程的保守显式局部时间步进方案
- DOI:
10.1016/j.jcp.2019.01.006 - 发表时间:
2019-04 - 期刊:
- 影响因子:0
- 作者:
Thi-Thao-Phuong Hoang;Wei Leng;Lili Ju;Zhu Wang;Konstantin Pieper - 通讯作者:
Konstantin Pieper
Unconditionally original energy-dissipative and MBP-preserving Crank-Nicolson scheme for the Allen-Cahn equation with general mobility
针对具有一般迁移率的艾伦 - 卡恩方程的无条件原始能量耗散且保持平均曲率运动(MBP)的克兰克 - 尼科尔森格式
- DOI:
10.1016/j.camwa.2025.04.021 - 发表时间:
2025-08-01 - 期刊:
- 影响因子:2.500
- 作者:
Dianming Hou;Hui Liu;Lili Ju - 通讯作者:
Lili Ju
A novel bond-based nonlocal diffusion model with matrix-valued coefficients in non-divergence form and its collocation discretization<span class="inline-figure"><img src="//ars.els-cdn.com/content/image/1-s2.0-S0898122124003432-fx001.jpg" width="17" height="19" /></span>
- DOI:
10.1016/j.camwa.2024.08.002 - 发表时间:
2024-11-01 - 期刊:
- 影响因子:
- 作者:
Hao Tian;Junke Lu;Lili Ju - 通讯作者:
Lili Ju
Dynamically regularized Lagrange multiplier schemes with energy dissipation for the incompressible Navier-Stokes equations
- DOI:
10.1016/j.jcp.2024.113550 - 发表时间:
2025-01-15 - 期刊:
- 影响因子:
- 作者:
Cao-Kha Doan;Thi-Thao-Phuong Hoang;Lili Ju;Rihui Lan - 通讯作者:
Rihui Lan
Unconditionally Energy Stable Linear Schemes for the Diffuse Interface Model with Peng–Robinson Equation of State
- DOI:
https://doi.org/10.1007/s10915-017-0576-7 - 发表时间:
2018 - 期刊:
- 影响因子:
- 作者:
Hongwei Li;Lili Ju;Chenfei Zhang;Qiujin Peng - 通讯作者:
Qiujin Peng
Lili Ju的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Lili Ju', 18)}}的其他基金
Maximum Bound Principle-Preserving Time Integration Methods for Some Semilinear Parabolic Equations
一些半线性抛物方程的最大有界原理-保时积分方法
- 批准号:
2109633 - 财政年份:2021
- 资助金额:
$ 12.28万 - 项目类别:
Standard Grant
Study on Localized Exponential Time Differencing Methods for Evolution Partial Differential Equations
演化偏微分方程的局部指数时差法研究
- 批准号:
1818438 - 财政年份:2018
- 资助金额:
$ 12.28万 - 项目类别:
Standard Grant
Fast and Stable Compact Exponential Time Difference Based Methods for Some Parabolic Equations
一些抛物方程的快速稳定的基于紧指数时差的方法
- 批准号:
1521965 - 财政年份:2015
- 资助金额:
$ 12.28万 - 项目类别:
Standard Grant
Numerical Improvements, Mesh Adaptation and Parameter Identification for Parallel Finite Element Stokes Ice Sheet Modeling
并行有限元斯托克斯冰盖建模的数值改进、网格自适应和参数识别
- 批准号:
1215659 - 财政年份:2012
- 资助金额:
$ 12.28万 - 项目类别:
Standard Grant
Study on Algorithms and Applications of Centroidal Voronoi Tessellations
质心Voronoi曲面细分算法及应用研究
- 批准号:
0913491 - 财政年份:2009
- 资助金额:
$ 12.28万 - 项目类别:
Standard Grant
相似海外基金
Computational Problems in Artificial Intelligence and Network Science: Probabilistic Analyses, Graph-Theoretic Characterizations, and Algorithmic Solutions
人工智能和网络科学中的计算问题:概率分析、图论表征和算法解决方案
- 批准号:
RGPIN-2014-04848 - 财政年份:2018
- 资助金额:
$ 12.28万 - 项目类别:
Discovery Grants Program - Individual
On constructions and analyses of public key cryptosystems based on diophantine problems and problems on ideal lattices of global fields
基于丢番图问题和全局域理想格问题的公钥密码体制的构造与分析
- 批准号:
17K18450 - 财政年份:2017
- 资助金额:
$ 12.28万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Computational Problems in Artificial Intelligence and Network Science: Probabilistic Analyses, Graph-Theoretic Characterizations, and Algorithmic Solutions
人工智能和网络科学中的计算问题:概率分析、图论表征和算法解决方案
- 批准号:
RGPIN-2014-04848 - 财政年份:2017
- 资助金额:
$ 12.28万 - 项目类别:
Discovery Grants Program - Individual
Computational Problems in Artificial Intelligence and Network Science: Probabilistic Analyses, Graph-Theoretic Characterizations, and Algorithmic Solutions
人工智能和网络科学中的计算问题:概率分析、图论表征和算法解决方案
- 批准号:
RGPIN-2014-04848 - 财政年份:2016
- 资助金额:
$ 12.28万 - 项目类别:
Discovery Grants Program - Individual
Computational Problems in Artificial Intelligence and Network Science: Probabilistic Analyses, Graph-Theoretic Characterizations, and Algorithmic Solutions
人工智能和网络科学中的计算问题:概率分析、图论表征和算法解决方案
- 批准号:
RGPIN-2014-04848 - 财政年份:2015
- 资助金额:
$ 12.28万 - 项目类别:
Discovery Grants Program - Individual
Computational Problems in Artificial Intelligence and Network Science: Probabilistic Analyses, Graph-Theoretic Characterizations, and Algorithmic Solutions
人工智能和网络科学中的计算问题:概率分析、图论表征和算法解决方案
- 批准号:
RGPIN-2014-04848 - 财政年份:2014
- 资助金额:
$ 12.28万 - 项目类别:
Discovery Grants Program - Individual
Empirical Analyses on the Moral Hazard Problems in the Demand andSupply of Health Care Services
医疗服务供需中的道德风险问题实证分析
- 批准号:
21730208 - 财政年份:2009
- 资助金额:
$ 12.28万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Root cause analyses of leaker problems on the walker R240
行者R240漏水问题根本原因分析
- 批准号:
371916-2008 - 财政年份:2008
- 资助金额:
$ 12.28万 - 项目类别:
Experience Awards (previously Industrial Undergraduate Student Research Awards)
Problems in evolutionary ecology and ecological parasitology: empirical tests, meta-analyses and models
进化生态学和生态寄生虫学问题:实证检验、荟萃分析和模型
- 批准号:
184607-2006 - 财政年份:2007
- 资助金额:
$ 12.28万 - 项目类别:
Discovery Grants Program - Individual
Multi-criteria performance analyses of supply chain management responses to the problems of stochastic customer demands
供应链管理应对随机客户需求问题的多标准绩效分析
- 批准号:
261513-2003 - 财政年份:2007
- 资助金额:
$ 12.28万 - 项目类别:
Discovery Grants Program - Individual