Fast and Stable Compact Exponential Time Difference Based Methods for Some Parabolic Equations

一些抛物方程的快速稳定的基于紧指数时差的方法

基本信息

  • 批准号:
    1521965
  • 负责人:
  • 金额:
    $ 20.1万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2015
  • 资助国家:
    美国
  • 起止时间:
    2015-08-01 至 2018-07-31
  • 项目状态:
    已结题

项目摘要

The goal of this project is to develop and analyze fast, stable, and accurate methods for numerical solutions of a family of parabolic equations that appear in diverse applications in science and engineering. The research will lead to production of very efficient and effective computational tools for problems typified by phase transition modeling, chemical reactions, population dynamics, cell membrane modeling, molecular beam epitaxy, fluid dynamics, and light propagation. The well-designed robust high-order algorithms would allow researchers to accurately catch the dynamics of these systems without high computational costs. This project also offers new insights into the understanding of the kinetic processes of microstructure coarsening, shape transformation of membrane lipid vesicles, and epitaxial growth of thin films through extensive numerical simulations. Graduate students will be directly involved in and benefit from their participation in the frontier research. Although exponential time integrator based techniques have been widely researched in the literature for solving semilinear or nonlinear parabolic equations of different orders, there still lack careful numerical and theoretical studies on accurate and stable treatments of stiff nonlinearities, direct and explicit incorporation of various inhomogeneous boundary conditions, and corresponding fast implementation algorithms. The methods in this project are explicit in nature, and they will utilize compact representations of high-order finite differences or spectral approximations for spatial operators in a rectangular domain, exponential multistep or Runge-Kutta approximations for accurate time integrations of boundary and stiff nonlinear terms, linear splitting schemes for effectively enhancing numerical stabilities, and FFT-based fast calculations for greatly reducing computational costs. The research will systematically study several techniques for improving accuracy and efficiency of the compact exponential time differencing methods in both space and time, and develop energy stability and error analyses for these schemes. The project will also generalize and apply these methods to some important problems arising from the study of some biological and physical phenomena, such as phase field bending energy models for cell membrane shape transformation and molecular beam epitaxy models for thin film growth.
这个项目的目标是开发和分析一类抛物型方程的快速、稳定和准确的数值解方法,这些方程在科学和工程中有不同的应用。这项研究将产生非常有效的计算工具,用于解决以相变建模、化学反应、布居动力学、细胞膜建模、分子束外延、流体动力学和光传播为代表的问题。设计良好的稳健高阶算法将使研究人员能够在不增加计算成本的情况下准确地捕捉到这些系统的动态。该项目还通过广泛的数值模拟,为理解薄膜微结构粗化、膜脂泡形状转变和薄膜外延生长的动力学过程提供了新的见解。研究生将直接参与前沿研究并从中受益。虽然基于指数时间积分器的方法在求解不同阶的半线性或非线性抛物型方程方面已经得到了广泛的研究,但对于刚性非线性的精确和稳定处理、各种非齐次边界条件的直接和显式结合以及相应的快速实现算法,仍然缺乏认真的数值和理论研究。该项目中的方法本质上是显式的,它们将使用矩形区域中空间算子的高阶有限差分或谱近似的紧致表示,用于边界和刚性非线性项的精确时间积分的指数多步或龙格-库塔近似,用于有效提高数值稳定性的线性分裂格式,以及用于极大地降低计算成本的基于FFT的快速计算。该研究将系统地研究提高紧致指数时差方法在空间和时间上的精度和效率的几种技术,并对这些方案进行能量稳定性分析和误差分析。该项目还将这些方法推广和应用于一些生物和物理现象研究中的一些重要问题,如用于细胞膜形状转变的相场弯曲能模型和用于薄膜生长的分子束外延模型。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Lili Ju其他文献

Conservative explicit local time-stepping schemes for the shallow water equations
浅水方程的保守显式局部时间步进方案
Unconditionally original energy-dissipative and MBP-preserving Crank-Nicolson scheme for the Allen-Cahn equation with general mobility
针对具有一般迁移率的艾伦 - 卡恩方程的无条件原始能量耗散且保持平均曲率运动(MBP)的克兰克 - 尼科尔森格式
Dynamically regularized Lagrange multiplier schemes with energy dissipation for the incompressible Navier-Stokes equations
  • DOI:
    10.1016/j.jcp.2024.113550
  • 发表时间:
    2025-01-15
  • 期刊:
  • 影响因子:
  • 作者:
    Cao-Kha Doan;Thi-Thao-Phuong Hoang;Lili Ju;Rihui Lan
  • 通讯作者:
    Rihui Lan
Unconditionally Energy Stable Linear Schemes for the Diffuse Interface Model with Peng–Robinson Equation of State
  • DOI:
    https://doi.org/10.1007/s10915-017-0576-7
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
  • 作者:
    Hongwei Li;Lili Ju;Chenfei Zhang;Qiujin Peng
  • 通讯作者:
    Qiujin Peng

Lili Ju的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Lili Ju', 18)}}的其他基金

Maximum Bound Principle-Preserving Time Integration Methods for Some Semilinear Parabolic Equations
一些半线性抛物方程的最大有界原理-保时积分方法
  • 批准号:
    2109633
  • 财政年份:
    2021
  • 资助金额:
    $ 20.1万
  • 项目类别:
    Standard Grant
Study on Localized Exponential Time Differencing Methods for Evolution Partial Differential Equations
演化偏微分方程的局部指数时差法研究
  • 批准号:
    1818438
  • 财政年份:
    2018
  • 资助金额:
    $ 20.1万
  • 项目类别:
    Standard Grant
Numerical Improvements, Mesh Adaptation and Parameter Identification for Parallel Finite Element Stokes Ice Sheet Modeling
并行有限元斯托克斯冰盖建模的数值改进、网格自适应和参数识别
  • 批准号:
    1215659
  • 财政年份:
    2012
  • 资助金额:
    $ 20.1万
  • 项目类别:
    Standard Grant
Study on Algorithms and Applications of Centroidal Voronoi Tessellations
质心Voronoi曲面细分算法及应用研究
  • 批准号:
    0913491
  • 财政年份:
    2009
  • 资助金额:
    $ 20.1万
  • 项目类别:
    Standard Grant
Some Problems on Analyses and Applications of Centroidal Voronoi Tessellations
质心Voronoi曲面细分分析及应用的几个问题
  • 批准号:
    0609575
  • 财政年份:
    2006
  • 资助金额:
    $ 20.1万
  • 项目类别:
    Standard Grant

相似国自然基金

超α-stable过程及相关过程的大偏差理论
  • 批准号:
    10926110
  • 批准年份:
    2009
  • 资助金额:
    3.0 万元
  • 项目类别:
    数学天元基金项目
与稳定(Stable)过程有关的极限定理
  • 批准号:
    10901054
  • 批准年份:
    2009
  • 资助金额:
    16.0 万元
  • 项目类别:
    青年科学基金项目
基于Alpha-stable分布的SAR影像建模与分析方法研究
  • 批准号:
    40871199
  • 批准年份:
    2008
  • 资助金额:
    30.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: Deciphering the mechanisms of marine nitrous oxide cycling using stable isotopes, molecular markers and in situ rates
合作研究:利用稳定同位素、分子标记和原位速率破译海洋一氧化二氮循环机制
  • 批准号:
    2319097
  • 财政年份:
    2024
  • 资助金额:
    $ 20.1万
  • 项目类别:
    Standard Grant
CAREER: Computational Design of Single-Atom Sites in Alloy Hosts as Stable and Efficient Catalysts
职业:合金主体中单原子位点的计算设计作为稳定和高效的催化剂
  • 批准号:
    2340356
  • 财政年份:
    2024
  • 资助金额:
    $ 20.1万
  • 项目类别:
    Continuing Grant
Collaborative Research: Intertropical Convergence Zone Variations from Stable Oxygen Isotope Tree-ring Records in the Tropical Americas
合作研究:热带美洲稳定氧同位素树轮记录的热带辐合带变化
  • 批准号:
    2303525
  • 财政年份:
    2024
  • 资助金额:
    $ 20.1万
  • 项目类别:
    Standard Grant
Development of highly efficient and stable photon-counting type X-ray detectors using single crystal metal halide perovskite semiconductors
利用单晶金属卤化物钙钛矿半导体开发高效稳定的光子计数型X射线探测器
  • 批准号:
    24K15592
  • 财政年份:
    2024
  • 资助金额:
    $ 20.1万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
GreenPerovs: Green, Efficient, and Stable Halide Perovskites for Heterogeneous Photocatalysis
GreenPerovs:用于多相光催化的绿色、高效、稳定的卤化物钙钛矿
  • 批准号:
    EP/Y029291/1
  • 财政年份:
    2024
  • 资助金额:
    $ 20.1万
  • 项目类别:
    Fellowship
K-stable Fano 3-folds
K-stable Fano 3 倍
  • 批准号:
    EP/Y033485/1
  • 财政年份:
    2024
  • 资助金额:
    $ 20.1万
  • 项目类别:
    Research Grant
ECCS-EPSRC: A new generation of cost-effective, scalable and stable radiation detectors with ultrahigh detectivity
ECCS-EPSRC:具有超高探测率的新一代经济高效、可扩展且稳定的辐射探测器
  • 批准号:
    EP/Y032942/1
  • 财政年份:
    2024
  • 资助金额:
    $ 20.1万
  • 项目类别:
    Research Grant
Collaborative Research: Intertropical Convergence Zone Variations from Stable Oxygen Isotope Tree-ring Records in the Tropical Americas
合作研究:热带美洲稳定氧同位素树轮记录的热带辐合带变化
  • 批准号:
    2303524
  • 财政年份:
    2024
  • 资助金额:
    $ 20.1万
  • 项目类别:
    Standard Grant
CAREER: Identifying reaction mechanisms for the formation of stable interphases in lithium metal batteries
职业:确定锂金属电池中形成稳定界面的反应机制
  • 批准号:
    2338202
  • 财政年份:
    2024
  • 资助金额:
    $ 20.1万
  • 项目类别:
    Continuing Grant
Towards Stable and Highly Efficient Lead-Free Tin-based Perovskite Solar Cells
迈向稳定高效的无铅锡基钙钛矿太阳能电池
  • 批准号:
    23K23457
  • 财政年份:
    2024
  • 资助金额:
    $ 20.1万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了