Numerical Improvements, Mesh Adaptation and Parameter Identification for Parallel Finite Element Stokes Ice Sheet Modeling

并行有限元斯托克斯冰盖建模的数值改进、网格自适应和参数识别

基本信息

  • 批准号:
    1215659
  • 负责人:
  • 金额:
    $ 15.76万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2012
  • 资助国家:
    美国
  • 起止时间:
    2012-08-01 至 2015-07-31
  • 项目状态:
    已结题

项目摘要

The numerical modeling of land ice evolution has been a subject of growing interest because of the crucial role land ice plays in global sea level and other parts of the climate system. Nonlinear 3D Stokes flow is the gold standard among conceptual models for ice sheet dynamics. The current widely-used shallow-ice, shallow-shelf, L1L2, and higher-order approximations are all obtained as reduced forms of the 3D Stokes model by means of scaling analysis, but in many situations, with an attendant loss of fidelity. The PI has closely collaborated with a team of collaborators on the preliminary development of a parallel finite element nonlinear 3D Stokes dynamical core for ice sheet modeling. The goal of the proposed project is to advance the current finite element Stokes ice sheet model by further studying and enhancing its efficiency, accuracy, usability, and robustness. The PI will first investigate some issues related to the finite element Stokes ice sheet dynamics solver, including analysis and implementation of Newton-based fast iterative methods for treating both rheological and basal boundary condition nonlinearities and an adaptive hybrid discretization scheme for enhancing the local conservation properties in our numerical model. In the ice-sheet model we consider, the Stokes ice sheet dynamics equations are fully coupled to the equation for temperature evolution, thus stable and accurate finite element temperature solver with accuracy commensurate with that of the Stokes solver is desired and will also be developed. It is well-known that the adjoint equation approach allows one to directly obtain accurate solutions for the quantity of interests. The PI will also investigate and develop adjoint equation-based methods for adaptive mesh refinement and identification of basal boundary sliding parameter using goal-oriented optimization approaches.Although numerical ice sheet models have steadily improved in recent years, much work is needed to make them more reliable, efficient and usable at long time and whole ice sheet scales. The enhanced numerical Stokes ice sheet model will achieve high degrees of efficiency and accuracy through the use of high-order accurate adaptive finite element discretization schemes, highly scalable parallel linear and nonlinear system solvers, goal-oriented variable resolution meshing strategies, and effective inverse design for model parameters. The proposed investigation would offer new insights through numerical simulations to the understanding of land ice evolution. The PI will actively disseminate his research results and tested software not only toresearchers in the area but also to much broader communities with interests in numerical methods and computational geophysics through publications, attending meetings, maintaining an informative web-site. The potential impact of the project is very substantial. Direct and transformative innovations resulting from the proposed project will greatly improve computational ice sheet model capabilities in the climate system modeling. In addition, this project will also offer a unique educational opportunity for graduate students with interests in computational and applied mathematics by having them participate in an interdisciplinary research program that combines mathematics, computer science and geological sciences.
由于陆冰在全球海平面和气候系统的其他部分中起着至关重要的作用,陆冰演变的数值模拟一直是一个越来越受关注的主题。非线性三维斯托克斯流是冰盖动力学概念模型中的金标准。目前广泛使用的浅冰、浅陆架、L1L2和高阶近似都是通过尺度分析作为三维Stokes模型的简化形式得到的,但在许多情况下,保真度会降低。PI与一组合作者密切合作,初步开发了用于冰盖建模的平行有限元非线性3D Stokes动力核心。本项目的目标是通过进一步研究和提高现有的有限元Stokes冰盖模型的效率、准确性、可用性和鲁棒性,来推进现有的有限元Stokes冰盖模型。PI将首先研究与有限元Stokes冰盖动力学求解器相关的一些问题,包括分析和实现基于牛顿的快速迭代方法,用于处理流变和基本边界条件非线性,以及自适应混合离散化方案,以增强我们数值模型中的局部守恒特性。在我们所考虑的冰盖模型中,Stokes冰盖动力学方程与温度演化方程是完全耦合的,因此需要开发出与Stokes求解器精度相当的稳定、精确的有限元温度求解器。众所周知,伴随方程法可以直接得到兴趣量的精确解。PI还将研究和开发基于伴随方程的方法,用于自适应网格细化和使用面向目标的优化方法识别基底边界滑动参数。尽管近年来数值冰盖模式得到了稳步的改进,但要使其在长时间和全冰盖尺度上更加可靠、高效和可用,还需要做很多工作。通过使用高阶精确自适应有限元离散化方案、高度可扩展的并行线性和非线性系统解算器、目标导向的变分辨率网格划分策略以及有效的模型参数反设计,增强的Stokes冰盖数值模型将实现高度的效率和精度。拟议的调查将通过数值模拟为了解陆冰演化提供新的见解。PI将积极传播他的研究成果和测试软件,不仅向该领域的研究人员,而且通过出版物,参加会议,维护一个信息网站,向对数值方法和计算地球物理学感兴趣的更广泛的社区传播。这个项目的潜在影响是巨大的。拟议项目产生的直接和变革性创新将大大提高气候系统模拟中计算冰盖模型的能力。此外,该项目还将为对计算数学和应用数学感兴趣的研究生提供一个独特的教育机会,让他们参与一个结合数学、计算机科学和地质科学的跨学科研究项目。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Lili Ju其他文献

Conservative explicit local time-stepping schemes for the shallow water equations
浅水方程的保守显式局部时间步进方案
Unconditionally original energy-dissipative and MBP-preserving Crank-Nicolson scheme for the Allen-Cahn equation with general mobility
针对具有一般迁移率的艾伦 - 卡恩方程的无条件原始能量耗散且保持平均曲率运动(MBP)的克兰克 - 尼科尔森格式
Dynamically regularized Lagrange multiplier schemes with energy dissipation for the incompressible Navier-Stokes equations
  • DOI:
    10.1016/j.jcp.2024.113550
  • 发表时间:
    2025-01-15
  • 期刊:
  • 影响因子:
  • 作者:
    Cao-Kha Doan;Thi-Thao-Phuong Hoang;Lili Ju;Rihui Lan
  • 通讯作者:
    Rihui Lan
Unconditionally Energy Stable Linear Schemes for the Diffuse Interface Model with Peng–Robinson Equation of State
  • DOI:
    https://doi.org/10.1007/s10915-017-0576-7
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
  • 作者:
    Hongwei Li;Lili Ju;Chenfei Zhang;Qiujin Peng
  • 通讯作者:
    Qiujin Peng

Lili Ju的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Lili Ju', 18)}}的其他基金

Maximum Bound Principle-Preserving Time Integration Methods for Some Semilinear Parabolic Equations
一些半线性抛物方程的最大有界原理-保时积分方法
  • 批准号:
    2109633
  • 财政年份:
    2021
  • 资助金额:
    $ 15.76万
  • 项目类别:
    Standard Grant
Study on Localized Exponential Time Differencing Methods for Evolution Partial Differential Equations
演化偏微分方程的局部指数时差法研究
  • 批准号:
    1818438
  • 财政年份:
    2018
  • 资助金额:
    $ 15.76万
  • 项目类别:
    Standard Grant
Fast and Stable Compact Exponential Time Difference Based Methods for Some Parabolic Equations
一些抛物方程的快速稳定的基于紧指数时差的方法
  • 批准号:
    1521965
  • 财政年份:
    2015
  • 资助金额:
    $ 15.76万
  • 项目类别:
    Standard Grant
Study on Algorithms and Applications of Centroidal Voronoi Tessellations
质心Voronoi曲面细分算法及应用研究
  • 批准号:
    0913491
  • 财政年份:
    2009
  • 资助金额:
    $ 15.76万
  • 项目类别:
    Standard Grant
Some Problems on Analyses and Applications of Centroidal Voronoi Tessellations
质心Voronoi曲面细分分析及应用的几个问题
  • 批准号:
    0609575
  • 财政年份:
    2006
  • 资助金额:
    $ 15.76万
  • 项目类别:
    Standard Grant

相似海外基金

An innovative bedside light that uses AI/ML to track sleep, monitor the environment and suggest improvements to help those impacted by insomnia
创新的床头灯,使用人工智能/机器学习来跟踪睡眠、监测环境并提出改进建议以帮助那些受失眠影响的人
  • 批准号:
    10100216
  • 财政年份:
    2024
  • 资助金额:
    $ 15.76万
  • 项目类别:
    Collaborative R&D
Personalised neurostimulation for Parkinson's inspired by neurophysiological improvements observed after physical exercise
帕金森氏症的个性化神经刺激受到体育锻炼后观察到的神经生理学改善的启发
  • 批准号:
    MR/Y014863/1
  • 财政年份:
    2024
  • 资助金额:
    $ 15.76万
  • 项目类别:
    Research Grant
Collaborative Research: Disciplinary Improvements for Past Global Change Research: Connecting Data Systems and Practitioners
协作研究:过去全球变化研究的学科改进:连接数据系统和从业者
  • 批准号:
    2347014
  • 财政年份:
    2023
  • 资助金额:
    $ 15.76万
  • 项目类别:
    Standard Grant
Disciplinary Improvements: THE DBER+ COMMONS - A FAIR/CARE/OS RCN
纪律改进:DBER COMMONS - FAIR/CARE/OS RCN
  • 批准号:
    2226271
  • 财政年份:
    2023
  • 资助金额:
    $ 15.76万
  • 项目类别:
    Standard Grant
Electrolyser Improvements driven by Waste Heat Recovery
废热回收推动电解槽改进
  • 批准号:
    10052878
  • 财政年份:
    2023
  • 资助金额:
    $ 15.76万
  • 项目类别:
    Feasibility Studies
Strain manipulation for Halide Perovskite Performance Improvements
卤化物钙钛矿性能改进的应变控制
  • 批准号:
    EP/Y024648/1
  • 财政年份:
    2023
  • 资助金额:
    $ 15.76万
  • 项目类别:
    Fellowship
Development of BioMara’s sustainable biorefinery for biomanufacturing new products from residual ‘waste’ streams and sustainability improvements
开发 BioMara 的可持续生物精炼厂,利用残余“废物”流生物制造新产品并提高可持续性
  • 批准号:
    10068120
  • 财政年份:
    2023
  • 资助金额:
    $ 15.76万
  • 项目类别:
    Collaborative R&D
Satellite-based evaluation of air quality improvements in logistics
基于卫星的物流空气质量改善评估
  • 批准号:
    23K01369
  • 财政年份:
    2023
  • 资助金额:
    $ 15.76万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Collaborative Research: Disciplinary Improvements for Past Global Change Research: Connecting Data Systems and Practitioners
协作研究:过去全球变化研究的学科改进:连接数据系统和从业者
  • 批准号:
    2226372
  • 财政年份:
    2023
  • 资助金额:
    $ 15.76万
  • 项目类别:
    Standard Grant
Neighbouring Projects: A cost effective, green, community-driven approach to home improvements.
邻近项目:一种经济高效、绿色、社区驱动的家居改善方法。
  • 批准号:
    10065764
  • 财政年份:
    2023
  • 资助金额:
    $ 15.76万
  • 项目类别:
    Collaborative R&D
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了