Study on Localized Exponential Time Differencing Methods for Evolution Partial Differential Equations

演化偏微分方程的局部指数时差法研究

基本信息

  • 批准号:
    1818438
  • 负责人:
  • 金额:
    $ 15万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-08-01 至 2021-07-31
  • 项目状态:
    已结题

项目摘要

Many important physical phenomena are modeled by semilinear or fully nonlinear evolution partial differential equations. The overall goal of the project is to enhance the efficiency and scalability of exponential integrator-based methods for solving these equations by designing and analyzing highly scalable localized exponential time differencing methods and to apply them to numerically simulate and investigate a wide range of related application problems in science and engineering. The proposed work is of practical interest with significant influences as the developed methods are highly scalable on modern supercomputer systems, and can serve as an efficient, accurate and stable computational tool for simulations of these stiff problems. Direct and transformative innovations resulting from the project will greatly improve modeling and computational capabilities for many fields, such as design of new materials and oil recovery from fractured oil reservoirs. In addition, this project will also offer a unique educational opportunity for graduate students with interests in computational and applied mathematics by having them participate in an interdisciplinary research environment.Direct parallelization of global exponential time differencing methods is often very hard to be scalable on massively distributed systems due to the intensive data communications needed by fast Fourier transform or by Krylov subspace-based calculations for products of matrix exponentials and vectors. On the other hand, domain decomposition approaches have been well established for many classic time integration methods, but not enough attention and work have been devoted to exponential integrators. This project involves a thorough study on the development and analysis of iterative and noniterative localized exponential time differencing methods based on domain decomposition, with a family of time-dependent scalar diffusion equations as the prototype problem. The PI will also apply the developed methods to study some phase field models for multi-component and multi-phase systems arising from materials science and petroleum engineering. This project would offer new insights through numerical investigations to the understanding of the macroscopic properties and reliability of alloys and the physical phenomena (such as liquid droplets, gas bubbles, and capillary pressure) of hydrocarbon fluids.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
许多重要的物理现象都可以用半线性或完全非线性的发展偏微分方程来模拟。该项目的总体目标是通过设计和分析高度可扩展的局部指数时间差分方法来提高基于指数积分器的方法求解这些方程的效率和可扩展性,并将其应用于数值模拟和研究科学和工程中广泛的相关应用问题。所提出的工作具有实际意义和重大影响,因为所开发的方法在现代超级计算机系统上具有高度可扩展性,并且可以作为模拟这些刚性问题的高效、准确和稳定的计算工具。该项目产生的直接和变革性创新将大大提高许多领域的建模和计算能力,例如新材料的设计和裂缝油藏的采油。此外,本发明还提供了一种方法,该项目还将为对计算和应用数学感兴趣的研究生提供一个独特的教育机会,让他们参与跨学科的研究环境。由于快速傅里叶变换或Krylov子空间需要密集的数据通信,全局指数时间差分方法的直接并行化通常很难在大规模分布式系统上扩展-基于矩阵指数和向量的乘积的计算。另一方面,区域分解方法已被许多经典的时间积分方法很好地建立,但没有足够的关注和工作一直致力于指数积分。本项目以一类含时标量扩散方程为原型问题,对基于区域分解的迭代和非迭代局部化指数时间差分方法的发展和分析进行了深入的研究。PI还将应用所开发的方法来研究材料科学和石油工程中出现的多组分和多相系统的相场模型。该项目将通过数值研究为理解合金的宏观性质和可靠性以及碳氢化合物流体的物理现象(如液滴、气泡和毛细管压力)提供新的见解。该奖项反映了NSF的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(19)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Maximum Bound Principles for a Class of Semilinear Parabolic Equations and Exponential Time-Differencing Schemes
一类半线性抛物型方程的最大界原理和指数时差格式
  • DOI:
    10.1137/19m1243750
  • 发表时间:
    2021-06-01
  • 期刊:
  • 影响因子:
    10.2
  • 作者:
    Du,Qiang;Ju,Lili;Qiao,Zhonghua
  • 通讯作者:
    Qiao,Zhonghua
Adaptive Exponential Time Integration of the Navier-Stokes Equations
  • DOI:
    10.2514/6.2020-2033
  • 发表时间:
    2020-01
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Shu-Jie Li;L. Ju;H. Si
  • 通讯作者:
    Shu-Jie Li;L. Ju;H. Si
Convergence Analysis of Exponential Time Differencing Schemes for the Cahn-Hilliard Equation†
Exponential Time-Marching method for the Unsteady Navier-Stokes Equations
  • DOI:
    10.2514/6.2019-0907
  • 发表时间:
    2019-01
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Shu-Jie Li;L. Ju
  • 通讯作者:
    Shu-Jie Li;L. Ju
Localized Exponential Time DifferencingMethod for Shallow Water Equations: Algorithms and Numerical Study
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Lili Ju其他文献

Conservative explicit local time-stepping schemes for the shallow water equations
浅水方程的保守显式局部时间步进方案
Unconditionally original energy-dissipative and MBP-preserving Crank-Nicolson scheme for the Allen-Cahn equation with general mobility
针对具有一般迁移率的艾伦 - 卡恩方程的无条件原始能量耗散且保持平均曲率运动(MBP)的克兰克 - 尼科尔森格式
Dynamically regularized Lagrange multiplier schemes with energy dissipation for the incompressible Navier-Stokes equations
  • DOI:
    10.1016/j.jcp.2024.113550
  • 发表时间:
    2025-01-15
  • 期刊:
  • 影响因子:
  • 作者:
    Cao-Kha Doan;Thi-Thao-Phuong Hoang;Lili Ju;Rihui Lan
  • 通讯作者:
    Rihui Lan
Unconditionally Energy Stable Linear Schemes for the Diffuse Interface Model with Peng–Robinson Equation of State
  • DOI:
    https://doi.org/10.1007/s10915-017-0576-7
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
  • 作者:
    Hongwei Li;Lili Ju;Chenfei Zhang;Qiujin Peng
  • 通讯作者:
    Qiujin Peng

Lili Ju的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Lili Ju', 18)}}的其他基金

Maximum Bound Principle-Preserving Time Integration Methods for Some Semilinear Parabolic Equations
一些半线性抛物方程的最大有界原理-保时积分方法
  • 批准号:
    2109633
  • 财政年份:
    2021
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Fast and Stable Compact Exponential Time Difference Based Methods for Some Parabolic Equations
一些抛物方程的快速稳定的基于紧指数时差的方法
  • 批准号:
    1521965
  • 财政年份:
    2015
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Numerical Improvements, Mesh Adaptation and Parameter Identification for Parallel Finite Element Stokes Ice Sheet Modeling
并行有限元斯托克斯冰盖建模的数值改进、网格自适应和参数识别
  • 批准号:
    1215659
  • 财政年份:
    2012
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Study on Algorithms and Applications of Centroidal Voronoi Tessellations
质心Voronoi曲面细分算法及应用研究
  • 批准号:
    0913491
  • 财政年份:
    2009
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Some Problems on Analyses and Applications of Centroidal Voronoi Tessellations
质心Voronoi曲面细分分析及应用的几个问题
  • 批准号:
    0609575
  • 财政年份:
    2006
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant

相似海外基金

Say Yes to NO: The Next Generation Scaffolds with Localized and Sustained Nitric Oxide (NO) Delivery for Central Nervous System Regeneration
对“否”说“是”:具有局部和持续一氧化氮 (NO) 输送的下一代支架,用于中枢神经系统再生
  • 批准号:
    EP/X027198/2
  • 财政年份:
    2024
  • 资助金额:
    $ 15万
  • 项目类别:
    Fellowship
Understanding the Geospace Phenomena Connected to Localized Perturbations in Earth’s Magnetic Field
了解与地球磁场局部扰动相关的地球空间现象
  • 批准号:
    2331527
  • 财政年份:
    2024
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Graft localized drug delivery to augment beta cell replacement therapies for diabetes
移植局部药物递送以增强糖尿病的β细胞替代疗法
  • 批准号:
    480374
  • 财政年份:
    2023
  • 资助金额:
    $ 15万
  • 项目类别:
    Operating Grants
Localized mitochondrial metabolic activity in Xenopus mesendoderm cells undergoing collective cell migration
爪蟾中内胚层细胞集体细胞迁移的局部线粒体代谢活性
  • 批准号:
    10751722
  • 财政年份:
    2023
  • 资助金额:
    $ 15万
  • 项目类别:
Engineering Surface Coatings for Localized Delivery of Therapeutic Extracellular Vesicles
用于治疗性细胞外囊泡局部递送的工程表面涂层
  • 批准号:
    10719257
  • 财政年份:
    2023
  • 资助金额:
    $ 15万
  • 项目类别:
ATD: Sparse and Localized Graph Convolutional Networks for Anomaly Detection and Active Learning
ATD:用于异常检测和主动学习的稀疏和局部图卷积网络
  • 批准号:
    2220574
  • 财政年份:
    2023
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Ultrasound-controlled remote activation of CAR T cells for localized tumor immunotherapy
超声控制远程激活 CAR T 细胞用于局部肿瘤免疫治疗
  • 批准号:
    10816252
  • 财政年份:
    2023
  • 资助金额:
    $ 15万
  • 项目类别:
Prostate Specific Anti-androgen Therapy for Localized Prostate Cancer
前列腺特异性抗雄激素疗法治疗局限性前列腺癌
  • 批准号:
    10760194
  • 财政年份:
    2023
  • 资助金额:
    $ 15万
  • 项目类别:
Optimizing Treatment Decision Making for Patients with Localized Renal Mass
优化局部肾脏肿块患者的治疗决策
  • 批准号:
    10734606
  • 财政年份:
    2023
  • 资助金额:
    $ 15万
  • 项目类别:
Non-invasive molecular imaging tool for rapid, longitudinal assessment of localized metabolic disruptions in animal research and care
非侵入性分子成像工具,用于快速纵向评估动物研究和护理中的局部代谢紊乱
  • 批准号:
    10602045
  • 财政年份:
    2023
  • 资助金额:
    $ 15万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了