Collaborative Research: Development of High-Resolution Finite-Volume Methods for Systems of Nonlinear Time-Dependent PDEs

合作研究:非线性时变偏微分方程组高分辨率有限体积方法的开发

基本信息

  • 批准号:
    1115718
  • 负责人:
  • 金额:
    $ 11.86万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2011
  • 资助国家:
    美国
  • 起止时间:
    2011-10-01 至 2015-09-30
  • 项目状态:
    已结题

项目摘要

The project is aimed at developing highly accurate, efficient and robust numerical methods for systems of nonlinear time-dependent PDEs, with particular reference to multidimensional hyperbolic systems of conservation/balance laws and related problems. The principal part of the proposed research will be focused on the development of new finite-volume methods that will provide an improved resolution of linear contact waves and incorporate new techniques for solving problems involving complicated nonlinear wave phenomena and blowing up/spiky solutions. The proposed methods will be applied to a variety of nonlinear problems, among which are systems of gas dynamics, nonlinear elasticity and acoustics systems, modern traffic flow models, several chemotaxis and bioconvection models, and others. These problems will be studied in the most challenging cases of high space dimensions, complex geometries and moving interfaces. For each problem, a high-resolution finite-volume scheme will be systematically derived in a way that the main properties satisfied by the underlying system of PDEs will be also satisfied on the discrete level. One of the key features of the new schemes will be their nonlinear stability, which will be ensured by ability of the scheme to preserve positivity of such physical quantities as density. To achieve this goal, several high-order positivity preserving techniques will be explored.Besides providing the examples that corroborate the analytical approach, the foregoing applications are of a substantial independent value for a broad class of problems arising in today's science including geophysics, meteorology, astrophysics, semiconductors, traffic flows, image processing, financial and biological modeling and many other areas. Development of modern high-resolution finite-volume methods as well as of supplementary techniques is essential for solving many practically important problems, some of which are currently out of reach because the existing numerical methods are either inefficient/inaccurate or not applicable at all.
该项目旨在为非线性时变偏微分方程系统开发高精度、高效和稳健的数值方法,特别是涉及多维双曲守恒/平衡律系统和相关问题。拟议的研究的主要部分将集中在新的有限体积方法的发展,将提供一个线性接触波的分辨率提高,并纳入新的技术来解决问题,涉及复杂的非线性波现象和爆破/尖峰的解决方案。所提出的方法将被应用到各种非线性问题,其中包括系统的气体动力学,非线性弹性和声学系统,现代交通流模型,几个趋化性和生物对流模型,以及其他。这些问题将在最具挑战性的高空间维度,复杂的几何形状和移动接口的情况下进行研究。对于每个问题,高分辨率的有限体积计划将系统地推导出的方式,基本系统的偏微分方程所满足的主要属性也将满足离散水平。新方案的关键特征之一将是它们的非线性稳定性,这将通过方案保持密度等物理量的正性的能力来确保。为了实现这一目标,几个高阶正性保持技术将explored. Although提供的例子,证实了分析方法,上述应用程序是一个实质性的独立的价值,在今天的科学,包括天体物理学,气象学,天体物理学,半导体,交通流量,图像处理,金融和生物建模和许多其他领域中出现的广泛的一类问题。现代高分辨率有限体积法以及补充技术的发展对于解决许多实际重要的问题是必不可少的,其中一些是目前无法实现的,因为现有的数值方法要么效率低/不准确,要么根本不适用。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Alexander Kurganov其他文献

Flux globalization-based well-balanced path-conservative central-upwind scheme for two-dimensional two-layer thermal rotating shallow water equations
  • DOI:
    10.1016/j.jcp.2024.113273
  • 发表时间:
    2024-10-15
  • 期刊:
  • 影响因子:
  • 作者:
    Yangyang Cao;Alexander Kurganov;Yongle Liu;Vladimir Zeitlin
  • 通讯作者:
    Vladimir Zeitlin
Locally divergence-free well-balanced path-conservative central-upwind schemes for rotating shallow water MHD
  • DOI:
    10.1016/j.jcp.2024.113300
  • 发表时间:
    2024-12-01
  • 期刊:
  • 影响因子:
  • 作者:
    Alina Chertock;Alexander Kurganov;Michael Redle;Vladimir Zeitlin
  • 通讯作者:
    Vladimir Zeitlin
Numerical study of the non-conservative NET-RAT traffic flow model by path-conservative central-upwind schemesspan class="inline-figure"img src="//ars.els-cdn.com/content/image/1-s2.0-S0898122124005613-fx001.jpg" width="17" height="19" //span
基于路径守恒中心迎风格式的非守恒 NET-RAT 交通流模型的数值研究
  • DOI:
    10.1016/j.camwa.2024.12.014
  • 发表时间:
    2025-02-01
  • 期刊:
  • 影响因子:
    2.500
  • 作者:
    Saeed Mohammadian;Zuduo Zheng;Shaoshuai Chu;Alexander Kurganov
  • 通讯作者:
    Alexander Kurganov
Stochastic Galerkin method for cloud simulation
Bound- and Positivity-Preserving Path-Conservative Central-Upwind AWENO Scheme for the Five-Equation Model of Compressible Two-Component Flows
  • DOI:
    10.1007/s10915-025-03003-y
  • 发表时间:
    2025-07-29
  • 期刊:
  • 影响因子:
    3.300
  • 作者:
    Qingcheng Fu;Yaguang Gu;Alexander Kurganov;Bao-Shan Wang
  • 通讯作者:
    Bao-Shan Wang

Alexander Kurganov的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Alexander Kurganov', 18)}}的其他基金

Collaborative Research: Structure Preserving Numerical Methods for Hyperbolic Balance Laws with Applications to Shallow Water and Atmospheric Models
合作研究:双曲平衡定律的结构保持数值方法及其在浅水和大气模型中的应用
  • 批准号:
    1818666
  • 财政年份:
    2018
  • 资助金额:
    $ 11.86万
  • 项目类别:
    Standard Grant
Collaborative Research: Numerical Methods for Partial Differential Equations Arising in Shallow Water Modeling
合作研究:浅水模拟中出现的偏微分方程的数值方法
  • 批准号:
    1521009
  • 财政年份:
    2015
  • 资助金额:
    $ 11.86万
  • 项目类别:
    Continuing Grant
Collaborative Research: Numerical methods for Shallow Water Equations and Related Models
合作研究:浅水方程及相关模型的数值方法
  • 批准号:
    1216957
  • 财政年份:
    2012
  • 资助金额:
    $ 11.86万
  • 项目类别:
    Standard Grant
Development of Robust, Efficient and Highly Accurate Numerical Methods Based on Godunov-Type Central Schemes
基于Godunov型中心方案的鲁棒、高效和高精度数值方法的开发
  • 批准号:
    0610430
  • 财政年份:
    2006
  • 资助金额:
    $ 11.86万
  • 项目类别:
    Standard Grant
Godunov-Type Central Schemes for Hyperbolic Problems: Further Development, Adaptation, and Applications
双曲问题的 Godunov 型中心方案:进一步发展、适应和应用
  • 批准号:
    0310585
  • 财政年份:
    2003
  • 资助金额:
    $ 11.86万
  • 项目类别:
    Standard Grant
New High-Resolution Semi-Discrete Central Schemes: Derivation, Applications and Local Error Analysis
新的高分辨率半离散中心方案:推导、应用和局部误差分析
  • 批准号:
    0196439
  • 财政年份:
    2001
  • 资助金额:
    $ 11.86万
  • 项目类别:
    Standard Grant
New High-Resolution Semi-Discrete Central Schemes: Derivation, Applications and Local Error Analysis
新的高分辨率半离散中心方案:推导、应用和局部误差分析
  • 批准号:
    0073631
  • 财政年份:
    2000
  • 资助金额:
    $ 11.86万
  • 项目类别:
    Standard Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: RESEARCH-PGR: Development of epigenetic editing for crop improvement
合作研究:RESEARCH-PGR:用于作物改良的表观遗传编辑的开发
  • 批准号:
    2331437
  • 财政年份:
    2024
  • 资助金额:
    $ 11.86万
  • 项目类别:
    Standard Grant
Collaborative Research: Broadening Instructional Innovation in the Chemistry Laboratory through Excellence in Curriculum Development
合作研究:通过卓越的课程开发扩大化学实验室的教学创新
  • 批准号:
    2337028
  • 财政年份:
    2024
  • 资助金额:
    $ 11.86万
  • 项目类别:
    Continuing Grant
Collaborative Research: CAS: Exploration and Development of High Performance Thiazolothiazole Photocatalysts for Innovating Light-Driven Organic Transformations
合作研究:CAS:探索和开发高性能噻唑并噻唑光催化剂以创新光驱动有机转化
  • 批准号:
    2400166
  • 财政年份:
    2024
  • 资助金额:
    $ 11.86万
  • 项目类别:
    Continuing Grant
Collaborative Research: Broadening Instructional Innovation in the Chemistry Laboratory through Excellence in Curriculum Development
合作研究:通过卓越的课程开发扩大化学实验室的教学创新
  • 批准号:
    2337027
  • 财政年份:
    2024
  • 资助金额:
    $ 11.86万
  • 项目类别:
    Continuing Grant
Collaborative Research: RESEARCH-PGR: Development of epigenetic editing for crop improvement
合作研究:RESEARCH-PGR:用于作物改良的表观遗传编辑的开发
  • 批准号:
    2331438
  • 财政年份:
    2024
  • 资助金额:
    $ 11.86万
  • 项目类别:
    Standard Grant
Collaborative Research: A Multi-Lab Investigation of the Conceptual Foundations of Early Number Development
合作研究:早期数字发展概念基础的多实验室调查
  • 批准号:
    2405548
  • 财政年份:
    2024
  • 资助金额:
    $ 11.86万
  • 项目类别:
    Standard Grant
Collaborative Research: CAS: Exploration and Development of High Performance Thiazolothiazole Photocatalysts for Innovating Light-Driven Organic Transformations
合作研究:CAS:探索和开发高性能噻唑并噻唑光催化剂以创新光驱动有机转化
  • 批准号:
    2400165
  • 财政年份:
    2024
  • 资助金额:
    $ 11.86万
  • 项目类别:
    Continuing Grant
Collaborative Research: HNDS-I. Mobility Data for Communities (MD4C): Uncovering Segregation, Climate Resilience, and Economic Development from Cell-Phone Records
合作研究:HNDS-I。
  • 批准号:
    2420945
  • 财政年份:
    2024
  • 资助金额:
    $ 11.86万
  • 项目类别:
    Standard Grant
SBP: Collaborative Research: Improving Engagement with Professional Development Programs by Attending to Teachers' Psychosocial Experiences
SBP:协作研究:通过关注教师的社会心理体验来提高对专业发展计划的参与度
  • 批准号:
    2314254
  • 财政年份:
    2023
  • 资助金额:
    $ 11.86万
  • 项目类别:
    Standard Grant
Collaborative Research: Frameworks: FZ: A fine-tunable cyberinfrastructure framework to streamline specialized lossy compression development
合作研究:框架:FZ:一个可微调的网络基础设施框架,用于简化专门的有损压缩开发
  • 批准号:
    2311878
  • 财政年份:
    2023
  • 资助金额:
    $ 11.86万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了