Collaborative Research: Numerical methods for Shallow Water Equations and Related Models

合作研究:浅水方程及相关模型的数值方法

基本信息

  • 批准号:
    1216957
  • 负责人:
  • 金额:
    $ 20万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2012
  • 资助国家:
    美国
  • 起止时间:
    2012-09-01 至 2016-08-31
  • 项目状态:
    已结题

项目摘要

The project is aimed at developing accurate, efficient, and robust numerical methods for shallow water equations and related models, with particular reference to problems that admit non-smooth (discontinuous) solutions and to problems that involve highly disparate scales and therefore are difficult to solve numerically. Shallow water and related models are widely used as a mathematical framework to study water flows in rivers and coastal areas as well as to investigate a variety of phenomena in atmospheric sciences and oceanography. These models are systems of time-dependent partial differential equations (PDEs) that are derived using physical properties such as conservation of mass and momentum, and hydrostatic or barotropic approximations. The principal part of the proposed research will be focused on the development of new methods for solving problems involving complicated nonlinear wave phenomena, problems with complex computational domains and moving interfaces. The resulting methods, while based on high-order shock-capturing finite-volume schemes and non-dissipative mesh-free particle methods, will incorporate special numerical techniques such as numerical balancing between the terms that are balanced in the original system of PDEs (development of well-balanced schemes), ensuring positivity of all fluid layers (this is absolutely necessary for both accurate description of dry and near dry states and enforcement of nonlinear stability), accurate and efficient operator splitting, accurate and efficient interface tracking, and others that will be in the focus of the proposed research project. The proposed project will contribute significantly toward development of computational methods for shallow water and related models. Special attention will be paid to applications arising in oceanography and atmospheric sciences, in which the Coriolis forces (due to the Earth's rotation), thermodynamics, and turbulent effects have to be taken into account. The problems under study include, among others, formation and propagation of atmospheric fronts and ocean currents, propagation of tsunami waves and their on-shore arrival, as well as propagation of pollutants in various environments. The numerical methods under design will provide considerably more powerful tools for studying a variety of internal and surface water waves, including tsunami and rogue waves. These extreme waves, which arise both in deep and shallow water, have a significant impact on the safety of people and infrastructure, and are responsible for damage to ships, oil platforms, coastlines, and sea bottoms and for changes to the biological environment. Thus, understanding the physics of these extreme waves is an important task that may even contribute to saving lives.
该项目旨在为浅水方程和相关模型开发准确,高效和鲁棒的数值方法,特别是涉及非光滑(不连续)解决方案的问题以及涉及高度不同尺度的问题,因此难以数值求解。浅水和相关模式被广泛用作研究河流和沿海地区水流以及大气科学和海洋学中各种现象的数学框架。这些模式是使用诸如质量和动量守恒以及流体静力学或正压近似等物理性质导出的依赖于时间的偏微分方程(PDE)的系统。拟议的研究的主要部分将集中在解决问题的新方法的发展,涉及复杂的非线性波现象,复杂的计算域和移动接口的问题。由此产生的方法,虽然基于高阶激波捕捉有限体积格式和非耗散无网格粒子方法,将纳入特殊的数值技术,如数值平衡之间的平衡,在原来的系统的偏微分方程(制定平衡的计划),确保所有流体层的正性(这对于精确描述干态和近干态以及加强非线性稳定性都是绝对必要的),精确和有效的算子分裂,准确和有效的界面跟踪,以及其他将成为拟议研究项目重点的问题。拟议的项目将大大有助于发展浅水和相关模型的计算方法。将特别注意海洋学和大气科学中出现的应用,其中必须考虑科里奥利力(由于地球自转),热力学和湍流效应。正在研究的问题除其他外包括大气锋和洋流的形成和传播、海啸波的传播及其抵达海岸以及污染物在各种环境中的传播。设计中的数值方法将为研究各种内波和表面波(包括海啸和流氓波)提供更强大的工具。这些在深水和浅水中出现的极端波浪对人员和基础设施的安全产生重大影响,并对船舶、石油平台、海岸线和海底造成损害,并改变生物环境。因此,了解这些极端波的物理学是一项重要的任务,甚至可能有助于拯救生命。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Alexander Kurganov其他文献

Flux globalization-based well-balanced path-conservative central-upwind scheme for two-dimensional two-layer thermal rotating shallow water equations
  • DOI:
    10.1016/j.jcp.2024.113273
  • 发表时间:
    2024-10-15
  • 期刊:
  • 影响因子:
  • 作者:
    Yangyang Cao;Alexander Kurganov;Yongle Liu;Vladimir Zeitlin
  • 通讯作者:
    Vladimir Zeitlin
Locally divergence-free well-balanced path-conservative central-upwind schemes for rotating shallow water MHD
  • DOI:
    10.1016/j.jcp.2024.113300
  • 发表时间:
    2024-12-01
  • 期刊:
  • 影响因子:
  • 作者:
    Alina Chertock;Alexander Kurganov;Michael Redle;Vladimir Zeitlin
  • 通讯作者:
    Vladimir Zeitlin
Numerical study of the non-conservative NET-RAT traffic flow model by path-conservative central-upwind schemesspan class="inline-figure"img src="//ars.els-cdn.com/content/image/1-s2.0-S0898122124005613-fx001.jpg" width="17" height="19" //span
基于路径守恒中心迎风格式的非守恒 NET-RAT 交通流模型的数值研究
  • DOI:
    10.1016/j.camwa.2024.12.014
  • 发表时间:
    2025-02-01
  • 期刊:
  • 影响因子:
    2.500
  • 作者:
    Saeed Mohammadian;Zuduo Zheng;Shaoshuai Chu;Alexander Kurganov
  • 通讯作者:
    Alexander Kurganov
Stochastic Galerkin method for cloud simulation
Bound- and Positivity-Preserving Path-Conservative Central-Upwind AWENO Scheme for the Five-Equation Model of Compressible Two-Component Flows
  • DOI:
    10.1007/s10915-025-03003-y
  • 发表时间:
    2025-07-29
  • 期刊:
  • 影响因子:
    3.300
  • 作者:
    Qingcheng Fu;Yaguang Gu;Alexander Kurganov;Bao-Shan Wang
  • 通讯作者:
    Bao-Shan Wang

Alexander Kurganov的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Alexander Kurganov', 18)}}的其他基金

Collaborative Research: Structure Preserving Numerical Methods for Hyperbolic Balance Laws with Applications to Shallow Water and Atmospheric Models
合作研究:双曲平衡定律的结构保持数值方法及其在浅水和大气模型中的应用
  • 批准号:
    1818666
  • 财政年份:
    2018
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
Collaborative Research: Numerical Methods for Partial Differential Equations Arising in Shallow Water Modeling
合作研究:浅水模拟中出现的偏微分方程的数值方法
  • 批准号:
    1521009
  • 财政年份:
    2015
  • 资助金额:
    $ 20万
  • 项目类别:
    Continuing Grant
Collaborative Research: Development of High-Resolution Finite-Volume Methods for Systems of Nonlinear Time-Dependent PDEs
合作研究:非线性时变偏微分方程组高分辨率有限体积方法的开发
  • 批准号:
    1115718
  • 财政年份:
    2011
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
Development of Robust, Efficient and Highly Accurate Numerical Methods Based on Godunov-Type Central Schemes
基于Godunov型中心方案的鲁棒、高效和高精度数值方法的开发
  • 批准号:
    0610430
  • 财政年份:
    2006
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
Godunov-Type Central Schemes for Hyperbolic Problems: Further Development, Adaptation, and Applications
双曲问题的 Godunov 型中心方案:进一步发展、适应和应用
  • 批准号:
    0310585
  • 财政年份:
    2003
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
New High-Resolution Semi-Discrete Central Schemes: Derivation, Applications and Local Error Analysis
新的高分辨率半离散中心方案:推导、应用和局部误差分析
  • 批准号:
    0196439
  • 财政年份:
    2001
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
New High-Resolution Semi-Discrete Central Schemes: Derivation, Applications and Local Error Analysis
新的高分辨率半离散中心方案:推导、应用和局部误差分析
  • 批准号:
    0073631
  • 财政年份:
    2000
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: WoU-MMA: Understanding the Physics and Electromagnetic Counterparts of Neutrino Blazars with Numerical Simulations
合作研究:WoU-MMA:通过数值模拟了解中微子耀变体的物理和电磁对应物
  • 批准号:
    2308090
  • 财政年份:
    2023
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
Collaborative Research: Evaluating and parameterizing wind stress over ocean surface waves using integrated high-resolution imaging and numerical simulations
合作研究:利用集成高分辨率成像和数值模拟评估和参数化海洋表面波浪的风应力
  • 批准号:
    2319535
  • 财政年份:
    2023
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
Collaborative Research: Effect of Vertical Accelerations on the Seismic Performance of Steel Building Components: An Experimental and Numerical Study
合作研究:垂直加速度对钢建筑构件抗震性能的影响:实验和数值研究
  • 批准号:
    2244696
  • 财政年份:
    2023
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
Collaborative Research: Accurate and Structure-Preserving Numerical Schemes for Variable Temperature Phase Field Models and Efficient Solvers
合作研究:用于变温相场模型和高效求解器的精确且结构保持的数值方案
  • 批准号:
    2309547
  • 财政年份:
    2023
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
eMB: Collaborative Research: Mechanistic models for seasonal avian migration: Analysis, numerical methods, and data analytics
eMB:协作研究:季节性鸟类迁徙的机制模型:分析、数值方法和数据分析
  • 批准号:
    2325195
  • 财政年份:
    2023
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
Collaborative Research: Effective Numerical Schemes for Fundamental Problems Related to Incompressible Fluids
合作研究:与不可压缩流体相关的基本问题的有效数值方案
  • 批准号:
    2309748
  • 财政年份:
    2023
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
Collaborative Research: Evaluating and parameterizing wind stress over ocean surface waves using integrated high-resolution imaging and numerical simulations
合作研究:利用集成高分辨率成像和数值模拟评估和参数化海洋表面波浪的风应力
  • 批准号:
    2319536
  • 财政年份:
    2023
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
Collaborative Research: Probing internal gravity wave dynamics and dissipation using global observations and numerical simulations
合作研究:利用全球观测和数值模拟探测内部重力波动力学和耗散
  • 批准号:
    2319142
  • 财政年份:
    2023
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
Collaborative Research: CAS-Climate: Risk Analysis for Extreme Climate Events by Combining Numerical and Statistical Extreme Value Models
合作研究:CAS-Climate:结合数值和统计极值模型进行极端气候事件风险分析
  • 批准号:
    2308680
  • 财政年份:
    2023
  • 资助金额:
    $ 20万
  • 项目类别:
    Continuing Grant
Collaborative Research: CAS-Climate: Risk Analysis for Extreme Climate Events by Combining Numerical and Statistical Extreme Value Models
合作研究:CAS-Climate:结合数值和统计极值模型进行极端气候事件风险分析
  • 批准号:
    2308679
  • 财政年份:
    2023
  • 资助金额:
    $ 20万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了