Godunov-Type Central Schemes for Hyperbolic Problems: Further Development, Adaptation, and Applications
双曲问题的 Godunov 型中心方案:进一步发展、适应和应用
基本信息
- 批准号:0310585
- 负责人:
- 金额:$ 13.07万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2003
- 资助国家:美国
- 起止时间:2003-07-01 至 2007-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Central schemes may serve as universal finite-difference methods fornumerically solving hyperbolic conservation and balance laws,Hamilton-Jacobi equations, and related problems. Such schemes are nottied to the specific eigen-structure of the problem, and hence can beimplemented in a straightforward manner for a wide variety of nonlinearequations governing the spontaneous evolution of large gradientphenomena. This project aims to further improve the family of Godunov-type centralschemes, recently developed by Kurganov et al. The main ideas behind theconstruction of the new, less dissipative central schemes are to usemore precise estimate of the smooth and nonsmooth parts of the solutionby considering non-rectangular control volumes; to use a more accurateprojection of the evolved data onto the original, non-staggered grid;and to avoid the loss of information when very accurate fully-discreteschemes are reduced to a much simpler semi-discrete form.The second main goal of the project is the application of central schemesto various multi-phase and multi-fluid flow models, the Saint-Venantsystems of shallow water equations (which describe flows in rivers andcoastal areas), multi-layer shallow water systems, models of transport ofpollutant in shallow water, the Euler equations of gas dynamics subjectto a static gravitational field, chemotaxis models, reactive flows (inparticular, the models describing stiff detonation waves), extendedthermodynamics, shallow water equations on a rotating sphere, acousticwave propagation, heterogeneous elasticity, granular material flows.Naturally, these applications involve multiple space dimensions, complexgeometries and moving boundaries/interfaces, This would require furtherdevelopment of the theory and implementation of central schemes. Inparticular, semi-discrete central schemes on unstructured and triangularmeshes will be derived, and different adaptive techniques will beincorporated into the central framework.Recent development of modern technology requires reliable, efficient,high-resolution methods for solving time-dependent partial differential equations (PDEs), including multidimensional systems of hyperbolicconservation and balance laws, Hamilton-Jacobi equations, and relatedproblems. In the past decade, a family of simple, universal,Riemann-solver-free finite volume central schemes has proven to bean appealing alternative to the more complicated and problem orientedupwind schemes. The advantages of central schemes are particularlyprominent when they are used to solve complicated multidimensionalsystems of PDEs arising in such important fields including fluidmechanics, gas dynamics, geophysics, meteorology, magnetohydrodynamics,astrophysics, multi-component flows, granular flows, reactive flows,semiconductors, non-Newtonian flows, geometric optics, traffic flow,image processing, financial, biological modeling, differential games,and optimal control. This project is focused on the further development and improvement ofcentral schemes, and on their practical applications. The new centralschemes will be incorporated into a general-purpose adaptive meshrefinement (AMR) and adaptive moving mesh (AMM) codes, which will befreely accessible for the scientific and industrial communities. Thesecodes will serve as a reliable and robust "black-box-solver" for arather comprehensive class of time-dependent PDEs.
中心格式可以作为数值求解双曲型守恒律和平衡律、Hamilton-Jacobi方程及相关问题的通用有限差分方法。这类方案不依赖于问题的特定本征结构,因此可以直接用于控制大梯度现象自发演化的各种非线性响应。该项目旨在进一步改进最近由Kurganov等人开发的Godunov型中心方案家族。构造新的、耗散较少的中心格式的主要思想是,通过考虑非矩形控制体,对解的光滑和非光滑部分进行更精确的估计;将演变的数据更准确地投影到原始的、非交错的网格上;该项目的第二个主要目标是将中心格式应用于各种多相和多流体流动模型、圣文氏浅水方程组(描述河流和沿海地区的流动)、多层浅水系统、污染物在浅水中的传输模型、静重力场作用下的气体动力学欧拉方程、趋化性模型、反应流(特别是描述刚性爆轰波的模型)、扩展热力学、旋转球面上的浅水方程、声波传播、非均质弹性、物质流动。这些应用涉及多个空间维度、复杂的几何形状和移动的边界/界面,这将需要进一步发展中心方案的理论和实施。特别是,非结构网格和三角网格上的半离散中心格式将被推导出来,不同的自适应技术将被结合到中心框架中。现代技术的发展要求可靠、高效、高分辨率的方法来求解含时偏微分方程组,包括双曲型守恒律和平衡律的多维系统、哈密顿-雅可比方程和相关问题。在过去的十年中,一族简单的、通用的、无Riemann解算器的有限体积中心格式被证明是比更复杂和面向问题的迎风格式更有吸引力的替代格式。当中心格式用于求解在流体力学、气体动力学、地球物理、气象学、磁流体力学、天体物理、多组分流、颗粒流、反应流、半导体、非牛顿流、几何光学、交通流、图像处理、金融、生物建模、微分对策和最优控制等重要领域中出现的复杂的多维偏微分方程组时,其优势尤为突出。本项目的重点是中央方案的进一步发展和完善,以及它们的实际应用。新的中央方案将被纳入通用的自适应网格加密(AMR)和自适应移动网格(AMM)代码,科学界和工业界将可以免费访问这些代码。这些代码将作为一种可靠而健壮的“黑箱解算器”,用于求解一类全面的依赖时间的偏微分方程组。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Alexander Kurganov其他文献
Flux globalization-based well-balanced path-conservative central-upwind scheme for two-dimensional two-layer thermal rotating shallow water equations
- DOI:
10.1016/j.jcp.2024.113273 - 发表时间:
2024-10-15 - 期刊:
- 影响因子:
- 作者:
Yangyang Cao;Alexander Kurganov;Yongle Liu;Vladimir Zeitlin - 通讯作者:
Vladimir Zeitlin
Locally divergence-free well-balanced path-conservative central-upwind schemes for rotating shallow water MHD
- DOI:
10.1016/j.jcp.2024.113300 - 发表时间:
2024-12-01 - 期刊:
- 影响因子:
- 作者:
Alina Chertock;Alexander Kurganov;Michael Redle;Vladimir Zeitlin - 通讯作者:
Vladimir Zeitlin
Numerical study of the non-conservative NET-RAT traffic flow model by path-conservative central-upwind schemesspan class="inline-figure"img src="//ars.els-cdn.com/content/image/1-s2.0-S0898122124005613-fx001.jpg" width="17" height="19" //span
基于路径守恒中心迎风格式的非守恒 NET-RAT 交通流模型的数值研究
- DOI:
10.1016/j.camwa.2024.12.014 - 发表时间:
2025-02-01 - 期刊:
- 影响因子:2.500
- 作者:
Saeed Mohammadian;Zuduo Zheng;Shaoshuai Chu;Alexander Kurganov - 通讯作者:
Alexander Kurganov
Stochastic Galerkin method for cloud simulation
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
A. Chertock;Alexander Kurganov;M. Lukáčová-Medviďová;P. Spichtinger;B. Wiebe - 通讯作者:
B. Wiebe
Bound- and Positivity-Preserving Path-Conservative Central-Upwind AWENO Scheme for the Five-Equation Model of Compressible Two-Component Flows
- DOI:
10.1007/s10915-025-03003-y - 发表时间:
2025-07-29 - 期刊:
- 影响因子:3.300
- 作者:
Qingcheng Fu;Yaguang Gu;Alexander Kurganov;Bao-Shan Wang - 通讯作者:
Bao-Shan Wang
Alexander Kurganov的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Alexander Kurganov', 18)}}的其他基金
Collaborative Research: Structure Preserving Numerical Methods for Hyperbolic Balance Laws with Applications to Shallow Water and Atmospheric Models
合作研究:双曲平衡定律的结构保持数值方法及其在浅水和大气模型中的应用
- 批准号:
1818666 - 财政年份:2018
- 资助金额:
$ 13.07万 - 项目类别:
Standard Grant
Collaborative Research: Numerical Methods for Partial Differential Equations Arising in Shallow Water Modeling
合作研究:浅水模拟中出现的偏微分方程的数值方法
- 批准号:
1521009 - 财政年份:2015
- 资助金额:
$ 13.07万 - 项目类别:
Continuing Grant
Collaborative Research: Numerical methods for Shallow Water Equations and Related Models
合作研究:浅水方程及相关模型的数值方法
- 批准号:
1216957 - 财政年份:2012
- 资助金额:
$ 13.07万 - 项目类别:
Standard Grant
Collaborative Research: Development of High-Resolution Finite-Volume Methods for Systems of Nonlinear Time-Dependent PDEs
合作研究:非线性时变偏微分方程组高分辨率有限体积方法的开发
- 批准号:
1115718 - 财政年份:2011
- 资助金额:
$ 13.07万 - 项目类别:
Standard Grant
Development of Robust, Efficient and Highly Accurate Numerical Methods Based on Godunov-Type Central Schemes
基于Godunov型中心方案的鲁棒、高效和高精度数值方法的开发
- 批准号:
0610430 - 财政年份:2006
- 资助金额:
$ 13.07万 - 项目类别:
Standard Grant
New High-Resolution Semi-Discrete Central Schemes: Derivation, Applications and Local Error Analysis
新的高分辨率半离散中心方案:推导、应用和局部误差分析
- 批准号:
0196439 - 财政年份:2001
- 资助金额:
$ 13.07万 - 项目类别:
Standard Grant
New High-Resolution Semi-Discrete Central Schemes: Derivation, Applications and Local Error Analysis
新的高分辨率半离散中心方案:推导、应用和局部误差分析
- 批准号:
0073631 - 财政年份:2000
- 资助金额:
$ 13.07万 - 项目类别:
Standard Grant
相似国自然基金
铋基邻近双金属位点Type B异质结光热催化合成氨机制研究
- 批准号:
- 批准年份:2024
- 资助金额:30.0 万元
- 项目类别:省市级项目
智能型Type-I光敏分子构效设计及其抗耐药性感染研究
- 批准号:22207024
- 批准年份:2022
- 资助金额:20 万元
- 项目类别:青年科学基金项目
TypeⅠR-M系统在碳青霉烯耐药肺炎克雷伯菌流行中的作用机制研究
- 批准号:
- 批准年份:2021
- 资助金额:55 万元
- 项目类别:面上项目
替加环素耐药基因 tet(A) type 1 变异体在碳青霉烯耐药肺炎克雷伯菌中的流行、进化和传播
- 批准号:LY22H200001
- 批准年份:2021
- 资助金额:0.0 万元
- 项目类别:省市级项目
面向手性α-氨基酰胺药物的新型不对称Ugi-type 反应开发
- 批准号:LY22B020003
- 批准年份:2021
- 资助金额:0.0 万元
- 项目类别:省市级项目
BMP9/BMP type I receptors 通过激活 PPARα保护心肌梗死的机制研究
- 批准号:LQ22H020003
- 批准年份:2021
- 资助金额:0.0 万元
- 项目类别:省市级项目
C2H2-type锌指蛋白在香菇采后组织软化进程中的作用机制研究
- 批准号:32102053
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
血管阻断型Type-I光敏剂合成及其三阴性乳腺癌光诊疗
- 批准号:62120106002
- 批准年份:2021
- 资助金额:255 万元
- 项目类别:国际(地区)合作与交流项目
Chichibabin-type偶联反应在构建联氮杂芳烃中的应用
- 批准号:
- 批准年份:2020
- 资助金额:63 万元
- 项目类别:面上项目
茶尺蠖Type-II环氧性信息素合成酶关键基因的鉴定及功能研究
- 批准号:LQ21C140001
- 批准年份:2020
- 资助金额:0.0 万元
- 项目类别:省市级项目
相似海外基金
Mechanisms and therapy of autoimmune nodopathy type central and peripheral demyelination by newly discovered anti-nodal antibodies
新发现的抗结节抗体治疗自身免疫性结节病型中枢和外周脱髓鞘的机制和治疗
- 批准号:
22H02985 - 财政年份:2022
- 资助金额:
$ 13.07万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Assessing central muscarinic acetylcholine type-1 receptors in cocaine use disorder with 11C-LSN3172176.
使用 11C-LSN3172176 评估可卡因使用障碍中的中枢毒蕈碱乙酰胆碱 1 型受体。
- 批准号:
10367251 - 财政年份:2022
- 资助金额:
$ 13.07万 - 项目类别:
Understanding of adverse effects of organic arsenicals on central nervous system by chemical structure-cell type-brain region-toxicity relationship analyses
通过化学结构-细胞类型-脑区-毒性关系分析了解有机砷对中枢神经系统的不良影响
- 批准号:
22K12394 - 财政年份:2022
- 资助金额:
$ 13.07万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Assessing central muscarinic acetylcholine type-1 receptors in cocaine use disorder with 11C-LSN3172176.
使用 11C-LSN3172176 评估可卡因使用障碍中的中枢毒蕈碱乙酰胆碱 1 型受体。
- 批准号:
10609795 - 财政年份:2022
- 资助金额:
$ 13.07万 - 项目类别:
Cell-type specific central amygdala neurotransmission in alcohol dependence
酒精依赖中细胞类型特异性中央杏仁核神经传递
- 批准号:
10315123 - 财政年份:2021
- 资助金额:
$ 13.07万 - 项目类别:
Cell-type specific central amygdala neurotransmission in alcohol dependence
酒精依赖中细胞类型特异性中央杏仁核神经传递
- 批准号:
10488632 - 财政年份:2021
- 资助金额:
$ 13.07万 - 项目类别:
Central and direct role of the small intestine in the improvement of type 2 diabetes following RYGB
小肠在 RYGB 后改善 2 型糖尿病中的核心和直接作用
- 批准号:
10624230 - 财政年份:2020
- 资助金额:
$ 13.07万 - 项目类别:
Central and direct role of the small intestine in the improvement of type 2 diabetes following RYGB
小肠在 RYGB 后改善 2 型糖尿病中的核心和直接作用
- 批准号:
10172894 - 财政年份:2020
- 资助金额:
$ 13.07万 - 项目类别:
Central and direct role of the small intestine in the improvement of type 2 diabetes following RYGB
小肠在 RYGB 后改善 2 型糖尿病中的核心和直接作用
- 批准号:
10398156 - 财政年份:2020
- 资助金额:
$ 13.07万 - 项目类别:
Investigation of Cell-Type Specific Contributions to Bladder Pain Modulation in the Central Amygdala
中央杏仁核中细胞类型对膀胱疼痛调节的特异性贡献的研究
- 批准号:
9760073 - 财政年份:2019
- 资助金额:
$ 13.07万 - 项目类别: