Nonlinear/Switching Control Design for Constrained Control Systems with Application to Magnetic Suspension

约束控制系统的非线性/开关控制设计及其在磁悬浮中的应用

基本信息

  • 批准号:
    0621651
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2006
  • 资助国家:
    美国
  • 起止时间:
    2006-09-01 至 2010-08-31
  • 项目状态:
    已结题

项目摘要

Prop No. 0621651PI: HuIntellectual Merits: The proposed work aims to explore the best performances of control systems with limited control capacity and resources. Non-quadratic Lyapunov functions will be developed and applied to the construction of nonlinear feedback laws, possibly with switchingand hybrid structures. It is expected that nonlinear control laws are able to incorporate various constraints and utilize the limited resources more effectively than linear controllers. The nonlinear controllers will be constructed for the optimization of various performances, including stability region, robustness and disturbance rejection, under input and output constraints. To bridge the gap between theory and practice, this work emphasizes the realizablility of the Lyapunov approach and the design problems will be formulated into numerically tractable linear/bilinear matrix inequalities. Broader Impact: Constraints are ubiquitous in control systems. All actuators have limited capacity and all physical quantities are bounded. Magnetic suspension systems are typical examples with severe constraints. They have been utilized in a variety of engineering systems ranging from artificial heart pumps to maglev trains. The outcome of the project will benefit the society with methodologies for the development of high performance, low power, economical and compact devices. Computational software will be made available along with published articles to promote the application of the results and to stimulate the development of nonlinear control design methods. An embedded magnetic suspension system will be constructed for both research and educational purposes. Female and minority students will be actively engaged in the project. Collaboration with local industrial partners will be established to promote the application of research results.
优点:提出的工作旨在探索控制能力和资源有限的控制系统的最佳性能。非二次李雅普诺夫函数将被发展并应用于非线性反馈律的构造,可能与开关和混合结构。期望非线性控制律能够比线性控制律更有效地结合各种约束条件和利用有限的资源。在输入和输出约束下,将构造非线性控制器来优化各种性能,包括稳定区域、鲁棒性和抗扰性。为了弥合理论与实践之间的差距,本工作强调了李雅普诺夫方法的可实现性,设计问题将被表述为数值上可处理的线性/双线性矩阵不等式。更广泛的影响:约束在控制系统中无处不在。所有执行器的容量都是有限的,所有的物理量都是有限的。磁悬浮系统是具有严格约束的典型例子。它们已被用于各种工程系统,从人工心脏泵到磁悬浮列车。该项目的成果将为开发高性能、低功耗、经济和紧凑的设备提供有益的方法。计算软件将与发表的文章一起提供,以促进结果的应用并刺激非线性控制设计方法的发展。一个嵌入式磁悬浮系统将被构建用于研究和教育目的。女性和少数民族学生将积极参与该项目。与本地工业伙伴建立合作关系,促进研究成果的应用。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Tingshu Hu其他文献

Algebraic method for parameter identification of circuit models for batteries under non-zero initial condition
  • DOI:
    10.1016/j.jpowsour.2014.06.069
  • 发表时间:
    2014-12-05
  • 期刊:
  • 影响因子:
  • 作者:
    Lalitha Devarakonda;Tingshu Hu
  • 通讯作者:
    Tingshu Hu

Tingshu Hu的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Tingshu Hu', 18)}}的其他基金

Control design of power electronic interfaces for optimal performance of renewable energy systems
电力电子接口的控制设计可实现可再生能源系统的最佳性能
  • 批准号:
    1200152
  • 财政年份:
    2012
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Analysis of Nonlinear Oscillations via Lyapunov Approach
通过李亚普诺夫方法分析非线性振荡
  • 批准号:
    0925269
  • 财政年份:
    2009
  • 资助金额:
    --
  • 项目类别:
    Standard Grant

相似国自然基金

Regime switching模型下衍生产品的套期保值
  • 批准号:
    11126124
  • 批准年份:
    2011
  • 资助金额:
    3.0 万元
  • 项目类别:
    数学天元基金项目
一类新Regime-Switching模型及其在金融建模中的应用研究
  • 批准号:
    11061041
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    地区科学基金项目

相似海外基金

New nonlinear control based on specific state transitions---to represent nonlinear systems by switching linear systems
基于特定状态转移的新型非线性控制——通过切换线性系统来表示非线性系统
  • 批准号:
    23K03911
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Optimal signal switching control of traffic signal for road construction work in one-sided alternating traffic sections
一侧交替交通路段道路施工交通信号优化切换控制
  • 批准号:
    22K11920
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Dynamic switching in the brainstem: a spatiotemporal mechanism for the neural control of breathing
脑干的动态切换:呼吸神经控制的时空机制
  • 批准号:
    10313260
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
Potential-responsive Luminescence Switching Based on Layer Charge Control in 2D Multiple Oxides
基于二维多重氧化物层电荷控制的电势响应发光开关
  • 批准号:
    22K05264
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Dynamic switching in the brainstem: a spatiotemporal mechanism for the neural control of breathing
脑干的动态切换:呼吸神经控制的时空机制
  • 批准号:
    10594393
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
Optimal control algorithm for continuous processes with switching operations
具有切换操作的连续过程的最优控制算法
  • 批准号:
    570868-2021
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Alliance Grants
Interface structure control for developing extremely sharp-switching organic semiconductors
用于开发极其急剧开关的有机半导体的界面结构控制
  • 批准号:
    21H04651
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Switching Control with Minimal Data
用最少的数据切换控制
  • 批准号:
    2106043
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Adaptation of control processes in code-switching
语码转换中控制过程的适应
  • 批准号:
    2017251
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Chemical Triggers for Magnetic Switching: Discovery and Control of Switching Mechanisms
磁开关的化学触发器:开关机制的发现和控制
  • 批准号:
    1956399
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了