Geometric Particle Filters for Visual Tracking (Attn. Dr. Kishan Baheti)
用于视觉跟踪的几何粒子过滤器(Attn. Dr. Kishan Baheti)
基本信息
- 批准号:0625218
- 负责人:
- 金额:$ 24万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2006
- 资助国家:美国
- 起止时间:2006-08-15 至 2010-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
B. PROJECT SUMMARYIn this research program, the PI proposes a novel combined geometric active contour/particlefiltering approach for tracking the boundaries of objects (i.e., planar shapes), when the observationis an image which may be a complicated nonlinear function of the closed curve. The advantageof using geometric active contours is that they allow topological changes (automatic merging andbreaking), and hence can be used to track multiple objects.More specifically, the particle filtering framework will be applied to the space of continuousclosed curves which is an infinite dimensional space. This is a particularly difficult problem sincegenerating Monte Carlo samples from a very large dimensional (theoretically infinite) system noisedistribution is computationally complex. Moreover, the number of samples required for accuratefiltering increases with the dimension of the system noise. The PI will show that as long as thenumber of dimensions of the system noise is small, even if the total state space dimension isvery large (or infinite), a particle filtering algorithm can be implemented which will allow himto develop practical robust tracking algorithms. In particular, the PI proposes to approximatecurve deformation using a time- varying finite dimensional representation. He will formulate theproblem as particle filtering with unknown static parameters and use a modification of a particlefilter that has been shown to be asymptotically stable for tracking static parameters.The main assumption is that even though the curve may be regarded as a point of an infinitedimensional space, "most of its deformation" for a given period of time can be approximated usinga small finite number of dimensions. But over time, this approximation may no longer sufficeand hence one must allow the number of dimensions and the finite dimensional basis to changewhenever the current approximation is unable to track with suffcient accuracy. For a numberof key scenarios, this assumption seems reasonable, and allows the use of infinite dimensionalobserver techniques for visual tracking.Intellectual Merit:The key objective of this project is the development of new methodologies for employing visualinformation in a feedback loop, the underlying problem of controlled active vision. This is achallenging problem both from the intellectual and practical points of view. Indeed, controlledactive vision, and in particular visual tracking requires the integration of techniques from controltheory, signal processing, and computer vision. This research program points the way to finding anew class of robust and hopefully real-time visual tracking schemes making use of all of the abovebuilding blocks.Broader Impact of Research Activity:The PI believes that the proposed synergy of vision, filtering, and control described in thisproposal may have a strong impact on tracking and active vision. Indeed, visual tracking providesa fundamental example of the need for controlled active vision. While tracking in the presence of adisturbance is a classical control problem, visual tracking raises new issues. Firstly, since camerasare part of the system, one must consider the nature of the disturbance from imaging sensors.Secondly, the feedback signal may require some interpretation of the image, e.g., segmentationof a target from its background, or an inference about an occluder. Finally, as visual processingbecomes more complex, the issue of processing time arises. Each of these problems must beanswered before target detection, and visually-mediated control can be provided for medical,commercial, or advanced weapon systems.
B。项目概述在这项研究计划中,PI提出了一种新的组合几何活动轮廓/粒子滤波方法,用于跟踪对象的边界(即,平面形状),当观察是一个图像,这可能是一个复杂的非线性函数的封闭曲线。使用几何活动轮廓的好处是它们允许拓扑变化(自动合并和断开),因此可以用于跟踪多个对象。更具体地说,粒子滤波框架将应用于无限维空间的连续闭合曲线空间。这是一个特别困难的问题,因为从一个非常大的维度(理论上是无限的)系统噪声分布生成蒙特卡罗样本在计算上是复杂的。此外,精确滤波所需的样本数量随着系统噪声的维数而增加。PI将表明,只要系统噪声的维数很小,即使总的状态空间维数很大(或无穷大),粒子滤波算法也可以实现,这将使他能够开发出实用的鲁棒跟踪算法。特别地,PI提出了使用时变有限维表示来近似曲线变形.他将把问题表述为具有未知静态参数的粒子滤波,并使用已被证明是渐近稳定的粒子滤波器的修改来跟踪静态参数。主要假设是,即使曲线可以被视为无限维空间中的一个点,在给定的时间段内,“它的大部分变形”可以近似使用一个小的有限维数。但随着时间的推移,这种近似可能不再足够,因此必须允许维数和有限维基的数量改变时,目前的近似无法跟踪足够的精度。对于一些关键的场景,这个假设似乎是合理的,并允许使用无限dimensionalobserver技术的视觉tracking.Intellectual优点:这个项目的主要目标是开发新的方法,采用visualinformation的反馈回路,控制主动视觉的根本问题。这是一个挑战性的问题,无论是从知识和实践的角度来看。事实上,受控主动视觉,特别是视觉跟踪需要控制理论,信号处理和计算机视觉技术的集成。这项研究计划指出了寻找一类新的强大的,希望实时的视觉跟踪计划,利用所有上述building blocks.Broader研究活动的影响:PI认为,建议的协同作用的视觉,过滤,并在thisproposal中描述的控制可能有很大的影响跟踪和主动视觉。事实上,视觉跟踪提供了一个基本的例子,需要控制主动视觉。虽然存在干扰的跟踪是一个经典的控制问题,视觉跟踪提出了新的问题。首先,由于相机是系统的一部分,因此必须考虑来自成像传感器的干扰的性质。其次,反馈信号可能需要对图像进行某种解释,例如,从背景中分割出目标,或者推断出遮挡物。最后,随着视觉处理变得更加复杂,处理时间的问题出现了。这些问题中的每一个都必须在目标检测之前得到解决,并且视觉介导的控制可以为医疗、商业或先进的武器系统提供。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Allen Tannenbaum其他文献
Nonlinearity inH ∞-control theory, causality in the commutant lifting theorem, and extension of intertwining operators
- DOI:
10.1007/bf01261204 - 发表时间:
1995-03-01 - 期刊:
- 影响因子:0.900
- 作者:
Ciprian Foias;Caixing Gu;Allen Tannenbaum - 通讯作者:
Allen Tannenbaum
Pointwise stability and feedback control of linear systems with noncommensurate time delays
- DOI:
10.1007/bf00046577 - 发表时间:
1984-06-01 - 期刊:
- 影响因子:1.000
- 作者:
Edward W. Kamen;Pramod P. Khargonekar;Allen Tannenbaum - 通讯作者:
Allen Tannenbaum
Irreducible components of the chow scheme of space curves
- DOI:
10.1007/bf01186369 - 发表时间:
1978-10-01 - 期刊:
- 影响因子:1.000
- 作者:
Allen Tannenbaum - 通讯作者:
Allen Tannenbaum
Fingerprints of cancer by persistent homology
通过持久同源性获得癌症指纹
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
Ana Carpio;Luis L. Bonilla;James C. Mathews;Allen Tannenbaum;Allen Tannenbaum - 通讯作者:
Allen Tannenbaum
On a certain class of real algebras which are projective free
- DOI:
10.1007/bf01190699 - 发表时间:
1984-05-01 - 期刊:
- 影响因子:0.500
- 作者:
Allen Tannenbaum - 通讯作者:
Allen Tannenbaum
Allen Tannenbaum的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Allen Tannenbaum', 18)}}的其他基金
Collaborative Research: Dynamic Blind Source Separation
合作研究:动态盲源分离
- 批准号:
1027134 - 财政年份:2010
- 资助金额:
$ 24万 - 项目类别:
Standard Grant
Optimal Transport for Visual Control and Tracking
视觉控制和跟踪的最佳传输
- 批准号:
0137412 - 财政年份:2002
- 资助金额:
$ 24万 - 项目类别:
Continuing Grant
Control of Distributed Nonlinear Systems and Semiconductor Manufacturing
分布式非线性系统和半导体制造的控制
- 批准号:
9700588 - 财政年份:1997
- 资助金额:
$ 24万 - 项目类别:
Continuing Grant
Mathematical Sciences: Structured and Nonlinear Interpolation Methods for Robust System Synthesis
数学科学:鲁棒系统综合的结构化和非线性插值方法
- 批准号:
9122106 - 财政年份:1992
- 资助金额:
$ 24万 - 项目类别:
Standard Grant
Mathematical Sciences: Functional Analysis and the Robust Control of Distributed and Nonlinear Systems
数学科学:泛函分析和分布式非线性系统的鲁棒控制
- 批准号:
8811084 - 财政年份:1988
- 资助金额:
$ 24万 - 项目类别:
Continuing Grant
EIA: Robust Control of Systems with Parameter Uncertainty: An Operator Theoretic Approach
EIA:参数不确定性系统的鲁棒控制:算子理论方法
- 批准号:
8704047 - 财政年份:1987
- 资助金额:
$ 24万 - 项目类别:
Standard Grant
相似国自然基金
环形等离子体中的离子漂移波不稳定性和湍流的保结构Particle-in-Cell模拟
- 批准号:11905220
- 批准年份:2019
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
基于多禁带光子晶体微球构建"Array on One Particle"传感体系
- 批准号:21902147
- 批准年份:2019
- 资助金额:27.0 万元
- 项目类别:青年科学基金项目
空气污染(主要是diesel exhaust particle,DEP)和支气管哮喘关系的研究
- 批准号:30560052
- 批准年份:2005
- 资助金额:20.0 万元
- 项目类别:地区科学基金项目
相似海外基金
This project will leverage artificial neural networks to automatically build various components of particle filters.
该项目将利用人工神经网络自动构建粒子滤波器的各种组件。
- 批准号:
2841890 - 财政年份:2023
- 资助金额:
$ 24万 - 项目类别:
Studentship
Next generation particle filters for stochastic partial differential equations
用于随机偏微分方程的下一代粒子滤波器
- 批准号:
EP/W016125/1 - 财政年份:2022
- 资助金额:
$ 24万 - 项目类别:
Research Grant
How local particle filters can be used to solve filtering and smoothing problems in Hidden Markov Models
如何使用局部粒子滤波器解决隐马尔可夫模型中的滤波和平滑问题
- 批准号:
1961576 - 财政年份:2017
- 资助金额:
$ 24万 - 项目类别:
Studentship
Robust Particle Filters in Julia
朱莉娅的稳健颗粒过滤器
- 批准号:
512997-2017 - 财政年份:2017
- 资助金额:
$ 24万 - 项目类别:
University Undergraduate Student Research Awards
Detection / isolation / recovery of sensor failure by particle filters
通过颗粒过滤器检测/隔离/恢复传感器故障
- 批准号:
16K06418 - 财政年份:2016
- 资助金额:
$ 24万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Energy and Ultrafine Particle Removal Efficiency of HVAC Air Filters
HVAC 空气过滤器的能量和超细颗粒去除效率
- 批准号:
428550-2011 - 财政年份:2013
- 资助金额:
$ 24万 - 项目类别:
Collaborative Research and Development Grants
Next generation Numerical Weather Prediction: 4DVar ensembles and Particle Filters
下一代数值天气预报:4DVar 系综和粒子滤波器
- 批准号:
NE/I025484/1 - 财政年份:2012
- 资助金额:
$ 24万 - 项目类别:
Research Grant
RUI: Uncertainty reduction through better nonlinear particle filters
RUI:通过更好的非线性粒子滤波器降低不确定性
- 批准号:
1217073 - 财政年份:2012
- 资助金额:
$ 24万 - 项目类别:
Continuing Grant
Real-time pose recognition of lab rats with a kinect depth camera using a GPU implementation of particle filters that combines per pixel observations with models of motion.
使用 Kinect 深度相机对实验室老鼠进行实时姿势识别,使用 GPU 实现的粒子滤波器,将每个像素的观察结果与运动模型相结合。
- 批准号:
427575-2012 - 财政年份:2012
- 资助金额:
$ 24万 - 项目类别:
Postgraduate Scholarships - Master's