Estimation of Functionals of High Dimensional Covariance Matrices

高维协方差矩阵泛函的估计

基本信息

  • 批准号:
    1209191
  • 负责人:
  • 金额:
    $ 30万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2012
  • 资助国家:
    美国
  • 起止时间:
    2012-09-01 至 2016-01-31
  • 项目状态:
    已结题

项目摘要

In a wide range of applications involving covariance, people are interested in certain aspects, i.e., functionals, of the covariance structure. Despite recent progress on methodological work on covariance matrices estimation, there has been remarkably little fundamental theoretical and methodological studies on optimal estimation of functionals of high dimensional covariance matrices. The goal of this proposal is to develop a coherent theory to unveil the precision to which covariance matrix functionals can be estimated, to develop general methodologies for optimal estimation of functionals of covariance matrices, to establish the asymptotic equivalence between covariance matrices estimation and Gaussian sequence models, and to address applications that arise in finance, bioinformatics, genomics, and meteorology etc. The research presented in this proposal will significantly advance the theoretical understanding of estimating functionals of large scale covariance matrices. In particular, the asymptotic equivalence theory to be developed will help build a close and inspiring connection between matrices estimation and classical Gaussian sequence models which had been well studied in the past thirty years, and help carry over results and methodologies developed in Gaussian sequence models to matrices estimation. The proposed optimal estimation procedures for those fundamentally important statistics methodologies, for example, principal components analysis, graphical model, and linear and quadratic discriminant analysis, will provide more accurate estimation and prediction rules in a wide range of applications.With the emergence of high dimensional data from modern technologies, estimating large scale covariance matrices and their functionals is becoming a crucial problem in many fields including climate studies, genomics and proteomics, functional magnetic resonance imaging, portfolio allocation and risk management. The traditional sample covariance matrix estimator has been used frequently in practice when analyzing high dimensional data, which may result in poor performance and invalid conclusions. To overcome the difficulty associated with the high dimensionality, regularized methods have been developed in recent years. A central role of covariance matrix in statistical analysis and its wide range of important statistical applications ensure that the progress the investigator and his colleagues make towards their proposed objectives will have a great impact in the broad scientific community which includes astronomy, bioinformatics, finance, genomics, meteorology and clinical research. Research results from this proposal will be disseminated through research articles, workshops and seminar series to researchers in other disciplines. The project will integrate research and education by teaching monograph courses and organizing workshops and seminars to help graduate students and postdocs, particularly minority, women, and domestic students and young researchers, work on this topic.
在涉及协方差的广泛应用中,人们对某些方面感兴趣,即,协方差结构的泛函。尽管最近的协方差矩阵估计的方法学工作取得了进展,有显着的基本理论和方法的研究很少高维协方差矩阵的泛函的最佳估计。该提案的目标是发展一个连贯的理论,以揭示协方差矩阵泛函可以估计的精度,发展协方差矩阵泛函最优估计的一般方法,建立协方差矩阵估计和高斯序列模型之间的渐近等价性,并解决金融,生物信息学,基因组学,本文的研究将对大尺度协方差矩阵泛函估计的理论研究有重要的推动作用。特别是,渐近等价理论的发展将有助于建立一个密切的和鼓舞人心的联系之间的矩阵估计和经典的高斯序列模型,已在过去的三十年中得到了很好的研究,并帮助结转的结果和方法,高斯序列模型的矩阵估计。本文提出的主成分分析、图模型、线性判别分析和二次判别分析等重要统计方法的最优估计方法,将为更广泛的应用提供更精确的估计和预测规则。大尺度协方差矩阵及其泛函的估计在气候研究、基因组学和蛋白质组学、功能磁共振成像、投资组合分配和风险管理等领域都是一个非常重要的问题。传统的样本协方差矩阵估计在实际应用中经常被用于分析高维数据,这可能导致性能不佳和结论无效。为了克服与高维相关的困难,近年来已经开发了正则化方法。 协方差矩阵在统计分析中的核心作用及其广泛的重要统计应用确保了研究者及其同事在实现其拟议目标方面取得的进展将对广泛的科学界产生重大影响,包括天文学,生物信息学,金融,基因组学,气象学和临床研究。这项建议的研究成果将通过研究文章、讲习班和系列研讨会向其他学科的研究人员传播。该项目将通过教授专题课程和组织讲习班和研讨会,将研究与教育结合起来,以帮助研究生和博士后,特别是少数民族、妇女、国内学生和年轻研究人员从事这一专题的工作。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Huibin Zhou其他文献

Three-Dimensional Adaptive Modulation and Coding for DDO-OFDM Transmission System
DDO-OFDM传输系统的三维自适应调制与编码
  • DOI:
    10.1109/jphot.2017.2690691
  • 发表时间:
    2017-04
  • 期刊:
  • 影响因子:
    2.4
  • 作者:
    Xi Chen;Zhenhua Feng;Ming Tang;Borui Li;Huibin Zhou;Songnian Fu;Deming Liu
  • 通讯作者:
    Deming Liu
Near-Diffraction- and Near-Dispersion-Free OAM Pulse Having a Controllable Group Velocity by Coherently Combining Different Bessel Beams Based on Space-Time Correlations
基于时空相关性的不同贝塞尔光束相干组合获得群速度可控的近衍射和近色散OAM脉冲
  • DOI:
    10.1364/fio.2020.fm7c.7
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    K. Pang;K. Zou;Hao Song;Zhe Zhao;A. Minoofar;Runzhou Zhang;Cong Liu;Haoqian Song;Huibin Zhou;X. Su;N. Hu;M. Tur;A. Willner
  • 通讯作者:
    A. Willner
Utilizing multiplexing of structured THz beams carrying orbital-angular-momentum for high-capacity communications.
利用携带轨道角动量的结构化太赫兹光束的复用进行高容量通信。
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    3.8
  • 作者:
    Huibin Zhou;X. Su;A. Minoofar;Runzhou Zhang;K. Zou;Hao Song;K. Pang;Haoqian Song;N. Hu;Zhe Zhao;A. Almaiman;S. Zach;M. Tur;A. Molisch;Hirofumi Sasaki;Doohwan Lee;A. Willner
  • 通讯作者:
    A. Willner
Experimental Demonstration of Tunable Space-Time Wave Packets Carrying Time- and Longitudinal-Varying OAM
携带时变和纵变OAM的可调谐时空波包的实验演示
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    X. Su;K. Zou;Huibin Zhou;Hao Song;Yuxiang Duan;M. Karpov;T. Kippenberg;M. Tur;D. Christodoulides;A. Willner
  • 通讯作者:
    A. Willner
Free-space mid-IR communications using wavelength and mode division multiplexing
使用波长和模分复用的自由空间中红外通信
  • DOI:
    10.1016/j.optcom.2023.129518
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    2.4
  • 作者:
    A. Willner;K. Zou;K. Pang;Hao Song;Huibin Zhou;A. Minoofar;X. Su
  • 通讯作者:
    X. Su

Huibin Zhou的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Huibin Zhou', 18)}}的其他基金

Overparameterization, Global Convergence of the Expectation-Maximization Algorithm, and Beyond
过度参数化、期望最大化算法的全局收敛及其他
  • 批准号:
    2112918
  • 财政年份:
    2021
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Statistical and Computational Guarantees of Three Siblings: Expectation-Maximization, Mean-Field Variational Inference, and Gibbs Sampling
三兄弟的统计和计算保证:期望最大化、平均场变分推理和吉布斯采样
  • 批准号:
    1811740
  • 财政年份:
    2018
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
Optimal Estimation of Statistical Networks
统计网络的最优估计
  • 批准号:
    1507511
  • 财政年份:
    2015
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Empirical Process and Modern Statistical Decision Theory
经验过程与现代统计决策理论
  • 批准号:
    1534545
  • 财政年份:
    2015
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
FRG: Collaborative Research: Statistical Inference for High-Dimensional Data: Theory, Methodology and Applications
FRG:协作研究:高维数据的统计推断:理论、方法和应用
  • 批准号:
    0854975
  • 财政年份:
    2009
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
Innovation and Inventiveness in Statistical Methodologies
统计方法的创新和创造性
  • 批准号:
    0852498
  • 财政年份:
    2008
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
CAREER: Asymptotic Statistical Decision Theory and Its Applications
职业:渐近统计决策理论及其应用
  • 批准号:
    0645676
  • 财政年份:
    2007
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant

相似海外基金

The Supreme Challenges of Supremal Functionals
至高泛函的最高挑战
  • 批准号:
    EP/X017109/1
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Research Grant
Stability for nonlocal curvature functionals
非局部曲率泛函的稳定性
  • 批准号:
    EP/W014807/2
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Research Grant
Research on various canonical Kaehler metrics by means of energy functionals and non-Archimedean metrics
利用能量泛函和非阿基米德度量研究各种典型凯勒度量
  • 批准号:
    23K03120
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
New developments on quantum information analysis by a stochastic analysis based on theory of spaces consisting of generalized functionals
基于广义泛函空间理论的随机分析量子信息分析新进展
  • 批准号:
    23K03139
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
The Supreme Challenges of Supremal Functionals
至高泛函的最高挑战
  • 批准号:
    EP/X017206/1
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Research Grant
Quantum Computing based density functionals for fast and accurate materials and chemistry simulations
基于量子计算的密度泛函,用于快速、准确的材料和化学模拟
  • 批准号:
    10074167
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Feasibility Studies
Advancing Machine-Learning Augmented Free-Energy Density Functionals for Fast and Accurate Quantum Simulations of Warm Dense Plasmas
推进机器学习增强自由能密度泛函,以实现快速、准确的热致密等离子体量子模拟
  • 批准号:
    2205521
  • 财政年份:
    2022
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Stability for nonlocal curvature functionals
非局部曲率泛函的稳定性
  • 批准号:
    EP/W014807/1
  • 财政年份:
    2022
  • 资助金额:
    $ 30万
  • 项目类别:
    Research Grant
Applications of Analytic and Probabilistic Methods in Convexity to Geometric Functionals
解析和概率方法在几何泛函凸性中的应用
  • 批准号:
    DGECR-2022-00431
  • 财政年份:
    2022
  • 资助金额:
    $ 30万
  • 项目类别:
    Discovery Launch Supplement
Applications of Analytic and Probabilistic Methods in Convexity to Geometric Functionals
解析和概率方法在几何泛函凸性中的应用
  • 批准号:
    RGPIN-2022-02961
  • 财政年份:
    2022
  • 资助金额:
    $ 30万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了