Statistical and Computational Guarantees of Three Siblings: Expectation-Maximization, Mean-Field Variational Inference, and Gibbs Sampling
三兄弟的统计和计算保证:期望最大化、平均场变分推理和吉布斯采样
基本信息
- 批准号:1811740
- 负责人:
- 金额:$ 30万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-08-01 至 2021-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Three sibling algorithms, expectation-maximization (EM), mean-field variational inference, and Gibbs sampling, are among the most popular algorithms for statistical inference. These iterative algorithms are closely related: each can be seen as a variant of the others. Despite a wide range of successful applications in both statistics and machine learning, there is little theoretical analysis explaining the effectiveness of these algorithms for high-dimensional and complex models. The research presented in this project will significantly advance the theoretical understanding of those iterative algorithms by unveiling the statistical and computational guarantees as well as potential pitfalls for statistical inference. The wide range of applications of EM, mean-field variational inference, and Gibbs sampling ensure that the progress we make towards our objectives will have a great impact in the broad scientific community which includes neuroscience and social sciences. Research results from this project will be disseminated through research articles, workshops and seminar series to researchers in other disciplines. The project will integrate research and education by teaching monograph courses and organizing workshops and seminars to help graduate students and postdocs, particularly minority, women, and domestic students and young researchers, work on this topic. In addition, the PI will work closely with the Yale Child Study Center and the Yale Institute for Network Science to explore appropriate and rigorous algorithms for neuroscience, autism spectrum disorder, social sciences, and data science education.The PI studies these iterative algorithms by addressing the following questions: 1) what is the sharp (nearly necessary and sufficient) initialization condition for the algorithm to achieve global convergence to optimal statistical accuracy? 2) how fast does the algorithm converge? 3) what are sharp separation conditions or signal strengths to guarantee global convergence? 4) what are the estimation and clustering error rates and how do they compare to the optimal statistical accuracy? There are three stages to developing a comprehensive theory for analyzing iterative algorithms: 1) studying statistical and computational guarantees of EM for Gaussian mixtures for both global parameter estimation and latent cluster recovery, 2) extending EM to mean-field variational inference and Gibbs sampling, and considering a unified analysis for a class of iterative algorithms, 3) extending Gaussian mixtures and Stochastic Block Models to a unified framework of latent variable models.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
三个兄弟算法,期望最大化(EM),平均场变分推理和吉布斯抽样,是最流行的统计推断算法。这些迭代算法是密切相关的:每一个都可以被看作是其他算法的变体。尽管在统计学和机器学习中有广泛的成功应用,但很少有理论分析解释这些算法对高维和复杂模型的有效性。本项目中的研究将通过揭示统计和计算保证以及统计推断的潜在陷阱来显着推进对这些迭代算法的理论理解。EM,平均场变分推理和吉布斯采样的广泛应用确保了我们朝着目标所取得的进展将在包括神经科学和社会科学在内的广泛科学界产生巨大影响。该项目的研究成果将通过研究文章、讲习班和系列研讨会向其他学科的研究人员传播。该项目将通过教授专题课程和组织讲习班和研讨会,将研究与教育结合起来,以帮助研究生和博士后,特别是少数民族、妇女、国内学生和年轻研究人员从事这一专题的工作。此外,PI将与耶鲁儿童研究中心和耶鲁网络科学研究所密切合作,探索神经科学、自闭症谱系障碍、社会科学和数据科学教育的适当和严格的算法。PI通过解决以下问题来研究这些迭代算法:1)什么是算法全局收敛到最优统计精度的尖锐(几乎必要和充分)初始化条件?2)算法收敛的速度有多快3)什么是保证全局收敛的锐分离条件或信号强度?4)估计和聚类错误率是多少,它们与最佳统计准确性相比如何?有三个阶段来发展一个全面的理论来分析迭代算法:1)研究了EM算法在高斯混合模型下的全局参数估计和潜在聚类恢复的统计和计算保证; 2)将EM算法推广到平均场变分推断和Gibbs抽样,并考虑了一类迭代算法的统一分析; 3)将高斯混合模型和随机块模型扩展到潜变量模型的统一框架。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估而被认为值得支持。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Optimal estimation of high-dimensional Gaussian location mixtures
- DOI:10.1214/22-aos2207
- 发表时间:2020-02
- 期刊:
- 影响因子:0
- 作者:Natalie Doss;Yihong Wu;Pengkun Yang;Harrison H. Zhou
- 通讯作者:Natalie Doss;Yihong Wu;Pengkun Yang;Harrison H. Zhou
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Huibin Zhou其他文献
Three-Dimensional Adaptive Modulation and Coding for DDO-OFDM Transmission System
DDO-OFDM传输系统的三维自适应调制与编码
- DOI:
10.1109/jphot.2017.2690691 - 发表时间:
2017-04 - 期刊:
- 影响因子:2.4
- 作者:
Xi Chen;Zhenhua Feng;Ming Tang;Borui Li;Huibin Zhou;Songnian Fu;Deming Liu - 通讯作者:
Deming Liu
Near-Diffraction- and Near-Dispersion-Free OAM Pulse Having a Controllable Group Velocity by Coherently Combining Different Bessel Beams Based on Space-Time Correlations
基于时空相关性的不同贝塞尔光束相干组合获得群速度可控的近衍射和近色散OAM脉冲
- DOI:
10.1364/fio.2020.fm7c.7 - 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
K. Pang;K. Zou;Hao Song;Zhe Zhao;A. Minoofar;Runzhou Zhang;Cong Liu;Haoqian Song;Huibin Zhou;X. Su;N. Hu;M. Tur;A. Willner - 通讯作者:
A. Willner
Utilizing multiplexing of structured THz beams carrying orbital-angular-momentum for high-capacity communications.
利用携带轨道角动量的结构化太赫兹光束的复用进行高容量通信。
- DOI:
- 发表时间:
2022 - 期刊:
- 影响因子:3.8
- 作者:
Huibin Zhou;X. Su;A. Minoofar;Runzhou Zhang;K. Zou;Hao Song;K. Pang;Haoqian Song;N. Hu;Zhe Zhao;A. Almaiman;S. Zach;M. Tur;A. Molisch;Hirofumi Sasaki;Doohwan Lee;A. Willner - 通讯作者:
A. Willner
Experimental Demonstration of Tunable Space-Time Wave Packets Carrying Time- and Longitudinal-Varying OAM
携带时变和纵变OAM的可调谐时空波包的实验演示
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
X. Su;K. Zou;Huibin Zhou;Hao Song;Yuxiang Duan;M. Karpov;T. Kippenberg;M. Tur;D. Christodoulides;A. Willner - 通讯作者:
A. Willner
Free-space mid-IR communications using wavelength and mode division multiplexing
使用波长和模分复用的自由空间中红外通信
- DOI:
10.1016/j.optcom.2023.129518 - 发表时间:
2023 - 期刊:
- 影响因子:2.4
- 作者:
A. Willner;K. Zou;K. Pang;Hao Song;Huibin Zhou;A. Minoofar;X. Su - 通讯作者:
X. Su
Huibin Zhou的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Huibin Zhou', 18)}}的其他基金
Overparameterization, Global Convergence of the Expectation-Maximization Algorithm, and Beyond
过度参数化、期望最大化算法的全局收敛及其他
- 批准号:
2112918 - 财政年份:2021
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Empirical Process and Modern Statistical Decision Theory
经验过程与现代统计决策理论
- 批准号:
1534545 - 财政年份:2015
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Optimal Estimation of Statistical Networks
统计网络的最优估计
- 批准号:
1507511 - 财政年份:2015
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Estimation of Functionals of High Dimensional Covariance Matrices
高维协方差矩阵泛函的估计
- 批准号:
1209191 - 财政年份:2012
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
FRG: Collaborative Research: Statistical Inference for High-Dimensional Data: Theory, Methodology and Applications
FRG:协作研究:高维数据的统计推断:理论、方法和应用
- 批准号:
0854975 - 财政年份:2009
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
Innovation and Inventiveness in Statistical Methodologies
统计方法的创新和创造性
- 批准号:
0852498 - 财政年份:2008
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
CAREER: Asymptotic Statistical Decision Theory and Its Applications
职业:渐近统计决策理论及其应用
- 批准号:
0645676 - 财政年份:2007
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
相似国自然基金
Computational Methods for Analyzing Toponome Data
- 批准号:60601030
- 批准年份:2006
- 资助金额:17.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Conference: Travel Grant for the 28th Annual International Conference on Research in Computational Molecular Biology (RECOMB 2024)
会议:第 28 届计算分子生物学研究国际会议 (RECOMB 2024) 旅费补助
- 批准号:
2414575 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Conference: Doctoral Consortium at Student Research Workshop at the Annual Conference of the North American Chapter of the Association for Computational Linguistics (NAACL)
会议:计算语言学协会 (NAACL) 北美分会年会学生研究研讨会上的博士联盟
- 批准号:
2415059 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
REU Site: Computational Methods with applications in Materials Science
REU 网站:计算方法及其在材料科学中的应用
- 批准号:
2348712 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
REU Site: Computational Number Theory
REU 网站:计算数论
- 批准号:
2349174 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
Integrated Computational and Mechanistic Investigation on New Reactivity and Selectivity in Emerging Enzymatic Reactions
新兴酶反应中新反应性和选择性的综合计算和机理研究
- 批准号:
2400087 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Collaborative Research: CIF: Medium: Snapshot Computational Imaging with Metaoptics
合作研究:CIF:Medium:Metaoptics 快照计算成像
- 批准号:
2403122 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Collaborative Research: CyberTraining: Pilot: PowerCyber: Computational Training for Power Engineering Researchers
协作研究:CyberTraining:试点:PowerCyber:电力工程研究人员的计算培训
- 批准号:
2319895 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
MFB: Better Homologous Folding using Computational Linguistics and Deep Learning
MFB:使用计算语言学和深度学习更好的同源折叠
- 批准号:
2330737 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
CAREER: Computational Design of Single-Atom Sites in Alloy Hosts as Stable and Efficient Catalysts
职业:合金主体中单原子位点的计算设计作为稳定和高效的催化剂
- 批准号:
2340356 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
Machine Learning for Computational Water Treatment
用于计算水处理的机器学习
- 批准号:
EP/X033244/1 - 财政年份:2024
- 资助金额:
$ 30万 - 项目类别:
Research Grant