Optimal Estimation of Statistical Networks
统计网络的最优估计
基本信息
- 批准号:1507511
- 负责人:
- 金额:$ 32万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-08-01 至 2018-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Network analysis is becoming one of the most active research areas in many fields. It offers a natural way to organize data by incorporating pairwise relations. This subject is highly interdisciplinary. Researchers from physics, computer science, social science, biology and statistics have made significant contributions to network analysis in theories, methodologies and applications. Despite those recent methodological and theoretical progresses in network analysis, there have been little fundamental studies on optimal estimation. The wide range of important applications of networks ensure that the progress towards the proposed fundamental research objectives will have a great impact in a broad scientific community, which may include co-authorship networks, web networks, friendship networks, educational networks, networks with information flow, gene expression networks, political networks, and healthcare networks. Research results from this project will be disseminated through research articles and seminar series to researchers in other disciplines. The project will integrate research and education by teaching monograph courses and organizing seminars to help graduate students and postdocs, particularly minority, women, and domestic students and young researchers, who work on this topic. We will work closely with the Yale Institute for Network Science and the Yale Center for Outcomes Research and Evaluation to explore appropriate and helpful network models for social sciences and medicine, and to make valid statistical inference.Various algorithms have been proposed and analyzed to understand the underlying generating mechanism of networks, called graphon, and to do community detection. Many consistency results are obtained. Despite these recent methodological and theoretical progresses on graphon estimation and community detection, especially on stochastic block model, there have been little fundamental studies on optimal estimation. For example, it is not clear whether the error rates for graphon estimation and community detection in those popular algorithms can be further improved. The goal of this project is to develop a coherent theory on optimal statistical network analysis. Specifically, we propose to study: 1) rate-optimal graphon estimation, 2) optimal community detection error rate, 3) computational barriers in graphon estimation and community section, 4) rate-optimal Bayesian posterior contraction, 5) generalizations to exponential family, to sparse networks, to networks of power law, to mixed membership networks, and to exchangeable high dimensional arrays or tensors, and 6) applications to social sciences and healthcare. The research in this project will significantly advance the theoretical understanding of statistical network analysis. The optimality theory will unveil the precision to what graphon estimation and community detection can be attained with or without computational constraints, and will integrate both frequentist and Bayesian perspectives for network analysis.
网络分析正成为许多领域中最活跃的研究领域之一。它提供了一种通过合并成对关系来组织数据的自然方法。这门学科是高度跨学科的。物理学、计算机科学、社会科学、生物学和统计学等领域的研究人员在网络分析的理论、方法和应用方面做出了重要贡献。尽管最近在网络分析的方法和理论方面取得了一些进展,但对最优估计的基础研究却很少。网络的广泛重要应用确保了所提出的基础研究目标的进展将在广泛的科学界产生巨大影响,这可能包括合著网络、网络、友谊网络、教育网络、信息流网络、基因表达网络、政治网络和医疗网络。该项目的研究成果将通过研究文章和系列研讨会传播给其他学科的研究人员。该项目将通过教授专题课程和组织研讨会,将研究和教育结合起来,以帮助研究生和博士后,特别是少数民族、妇女和国内学生以及从事这一专题工作的年轻研究人员。我们将与耶鲁大学网络科学研究所和耶鲁大学成果研究与评估中心密切合作,探索适合社会科学和医学的有用网络模型,并进行有效的统计推断。已经提出并分析了各种算法,以了解网络的潜在生成机制,称为graphon,并进行社区检测。得到了许多一致性结果。尽管最近在图子估计和社区检测方面取得了一些方法和理论上的进展,特别是在随机块模型方面,但对最优估计的基础研究还很少。例如,目前尚不清楚这些流行算法中的图子估计和社区检测的错误率是否可以进一步改善。这个项目的目标是发展一个最佳统计网络分析的连贯理论。具体而言,我们建议研究:1)速率最优图子估计,2)最优社团检测错误率,3)图子估计和社团部分中的计算障碍,4)速率最优贝叶斯后验收缩,5)推广到指数族、稀疏网络、幂律网络、混合隶属网络以及可交换的高维阵列或张量,6)社会科学和医疗保健应用。本项目的研究将极大地推进对统计网络分析的理论理解。最优性理论将揭示在有或没有计算约束的情况下,图子估计和社区检测可以达到的精度,并将整合频率论和贝叶斯观点用于网络分析。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Huibin Zhou其他文献
Three-Dimensional Adaptive Modulation and Coding for DDO-OFDM Transmission System
DDO-OFDM传输系统的三维自适应调制与编码
- DOI:
10.1109/jphot.2017.2690691 - 发表时间:
2017-04 - 期刊:
- 影响因子:2.4
- 作者:
Xi Chen;Zhenhua Feng;Ming Tang;Borui Li;Huibin Zhou;Songnian Fu;Deming Liu - 通讯作者:
Deming Liu
Near-Diffraction- and Near-Dispersion-Free OAM Pulse Having a Controllable Group Velocity by Coherently Combining Different Bessel Beams Based on Space-Time Correlations
基于时空相关性的不同贝塞尔光束相干组合获得群速度可控的近衍射和近色散OAM脉冲
- DOI:
10.1364/fio.2020.fm7c.7 - 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
K. Pang;K. Zou;Hao Song;Zhe Zhao;A. Minoofar;Runzhou Zhang;Cong Liu;Haoqian Song;Huibin Zhou;X. Su;N. Hu;M. Tur;A. Willner - 通讯作者:
A. Willner
Utilizing multiplexing of structured THz beams carrying orbital-angular-momentum for high-capacity communications.
利用携带轨道角动量的结构化太赫兹光束的复用进行高容量通信。
- DOI:
- 发表时间:
2022 - 期刊:
- 影响因子:3.8
- 作者:
Huibin Zhou;X. Su;A. Minoofar;Runzhou Zhang;K. Zou;Hao Song;K. Pang;Haoqian Song;N. Hu;Zhe Zhao;A. Almaiman;S. Zach;M. Tur;A. Molisch;Hirofumi Sasaki;Doohwan Lee;A. Willner - 通讯作者:
A. Willner
Experimental Demonstration of Tunable Space-Time Wave Packets Carrying Time- and Longitudinal-Varying OAM
携带时变和纵变OAM的可调谐时空波包的实验演示
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
X. Su;K. Zou;Huibin Zhou;Hao Song;Yuxiang Duan;M. Karpov;T. Kippenberg;M. Tur;D. Christodoulides;A. Willner - 通讯作者:
A. Willner
Free-space mid-IR communications using wavelength and mode division multiplexing
使用波长和模分复用的自由空间中红外通信
- DOI:
10.1016/j.optcom.2023.129518 - 发表时间:
2023 - 期刊:
- 影响因子:2.4
- 作者:
A. Willner;K. Zou;K. Pang;Hao Song;Huibin Zhou;A. Minoofar;X. Su - 通讯作者:
X. Su
Huibin Zhou的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Huibin Zhou', 18)}}的其他基金
Overparameterization, Global Convergence of the Expectation-Maximization Algorithm, and Beyond
过度参数化、期望最大化算法的全局收敛及其他
- 批准号:
2112918 - 财政年份:2021
- 资助金额:
$ 32万 - 项目类别:
Standard Grant
Statistical and Computational Guarantees of Three Siblings: Expectation-Maximization, Mean-Field Variational Inference, and Gibbs Sampling
三兄弟的统计和计算保证:期望最大化、平均场变分推理和吉布斯采样
- 批准号:
1811740 - 财政年份:2018
- 资助金额:
$ 32万 - 项目类别:
Continuing Grant
Empirical Process and Modern Statistical Decision Theory
经验过程与现代统计决策理论
- 批准号:
1534545 - 财政年份:2015
- 资助金额:
$ 32万 - 项目类别:
Standard Grant
Estimation of Functionals of High Dimensional Covariance Matrices
高维协方差矩阵泛函的估计
- 批准号:
1209191 - 财政年份:2012
- 资助金额:
$ 32万 - 项目类别:
Continuing Grant
FRG: Collaborative Research: Statistical Inference for High-Dimensional Data: Theory, Methodology and Applications
FRG:协作研究:高维数据的统计推断:理论、方法和应用
- 批准号:
0854975 - 财政年份:2009
- 资助金额:
$ 32万 - 项目类别:
Continuing Grant
Innovation and Inventiveness in Statistical Methodologies
统计方法的创新和创造性
- 批准号:
0852498 - 财政年份:2008
- 资助金额:
$ 32万 - 项目类别:
Standard Grant
CAREER: Asymptotic Statistical Decision Theory and Its Applications
职业:渐近统计决策理论及其应用
- 批准号:
0645676 - 财政年份:2007
- 资助金额:
$ 32万 - 项目类别:
Continuing Grant
相似海外基金
Optimal Loss-Based Covariance Matrix Estimation in High Dimensions with Applications to Unsupervised Statistical Learning
高维基于最优损失的协方差矩阵估计及其在无监督统计学习中的应用
- 批准号:
557275-2021 - 财政年份:2022
- 资助金额:
$ 32万 - 项目类别:
Postgraduate Scholarships - Doctoral
Optimal Loss-Based Covariance Matrix Estimation in High Dimensions with Applications to Unsupervised Statistical Learning
高维基于最优损失的协方差矩阵估计及其在无监督统计学习中的应用
- 批准号:
557275-2021 - 财政年份:2021
- 资助金额:
$ 32万 - 项目类别:
Postgraduate Scholarships - Doctoral
AF: Small: Optimal algorithms and new models for statistical estimation
AF:小:统计估计的最佳算法和新模型
- 批准号:
2127806 - 财政年份:2021
- 资助金额:
$ 32万 - 项目类别:
Standard Grant
Statistical Estimation of Optimal Dividend Barrier for Insurance Portfolios
保险组合最优红利障碍的统计估计
- 批准号:
16K00036 - 财政年份:2016
- 资助金额:
$ 32万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Statistical Estimation of Optimal Portfolios for Dependent Returns of Assets
资产相关收益最优投资组合的统计估计
- 批准号:
20730147 - 财政年份:2008
- 资助金额:
$ 32万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Optimal estimation in constrained problems with statistical applications
统计应用约束问题的最优估计
- 批准号:
92037-2001 - 财政年份:2005
- 资助金额:
$ 32万 - 项目类别:
Discovery Grants Program - Individual
Optimal estimation in constrained problems with statistical applications
统计应用约束问题的最优估计
- 批准号:
92037-2001 - 财政年份:2004
- 资助金额:
$ 32万 - 项目类别:
Discovery Grants Program - Individual
Optimal estimation in constrained problems with statistical applications
统计应用约束问题的最优估计
- 批准号:
92037-2001 - 财政年份:2003
- 资助金额:
$ 32万 - 项目类别:
Discovery Grants Program - Individual
Optimal estimation in constrained problems with statistical applications
统计应用约束问题的最优估计
- 批准号:
92037-2001 - 财政年份:2002
- 资助金额:
$ 32万 - 项目类别:
Discovery Grants Program - Individual
Optimal estimation in constrained problems with statistical applications
统计应用约束问题的最优估计
- 批准号:
92037-2001 - 财政年份:2001
- 资助金额:
$ 32万 - 项目类别:
Discovery Grants Program - Individual