Harmonic Analysis, Geometric Measure Theory and Partial Differential Equations
调和分析、几何测度论和偏微分方程
基本信息
- 批准号:0653180
- 负责人:
- 金额:$ 15.94万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2007
- 资助国家:美国
- 起止时间:2007-06-01 至 2011-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
HARMONIC ANALYSIS, GEOMETRIC MEASURE THEORY AND PARTIAL DIFFERENTIAL EQUATIONSAbstract of Proposed ResearchMarius Mitrea This project will develop the systematic use of singular integral operators (SIO) under more general hypotheses than has been previously attained. The goal is to display the effectiveness of SIO-based methods in circumstances traditionally handled by other, more specialized, tools (such as variational methods, harmonic measure techniques, etc).It is well-recognized that there are subtle connections between the boundedness of singular integral operators and the geometric measure-theoretic properties of sets. A fundamental result in this direction is the boundedness of SIO with reasonable kernels on surfaces which are Ahlfors regular (i.e., behave like n-1 dimensional at all scales), and contain ``big pieces of Lipschitz surfaces'' in a uniform fashion (one calls such surfaces uniformly rectifiable). This earlier work involved geometric measure theory, but has not yet been applied to problems in Partial Differential Equations (PDE). The ultimate goal of this proposal is to explore the role that SIO may play in the treatment of boundary value problems under sharp geometric measure theoretic assumptions on the domain and its boundary. In particular, this work will develop the analysis of SIO on uniformly rectifiable surfaces for applications to problems in PDE, such as boundary problems for the Laplace operator, other second order elliptic operators and systems (such as the Lame, Stokes and Maxwell systems).
调和分析、几何测度理论 与偏微分方程--拟研究摘要 本计画将在比先前更一般的假设下,发展奇异积分算子(SIO)的系统应用。我们的目标是显示基于SIO的方法在传统上由其他更专业的工具(如变分方法,调和测度技术等)处理的情况下的有效性。众所周知,奇异积分算子的有界性与集合的几何测度论性质之间存在着微妙的联系。在这个方向上的一个基本结果是SIO在Ahlfors正则表面上具有合理内核的有界性(即,在所有尺度上都表现得像n-1维),并且以统一的方式包含“大片的Lipschitz曲面”(人们称这种曲面为一致可求长的)。这一早期的工作涉及几何测度理论,但尚未应用于偏微分方程(PDE)的问题。这个建议的最终目标是探讨的作用,SIO可能发挥在尖锐的几何测度理论假设下的域及其边界的边值问题的治疗。特别是,这项工作将开发的分析SIO的一致可求长的表面上的应用程序的问题,在PDE,如边界问题的拉普拉斯运营商,其他二阶椭圆运营商和系统(如拉梅,斯托克斯和麦克斯韦系统)。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Marius Mitrea其他文献
Boundary value problems and layer potentials on manifolds with cylindrical ends
- DOI:
10.1007/s10587-007-0118-9 - 发表时间:
2007-12-01 - 期刊:
- 影响因子:0.500
- 作者:
Marius Mitrea;Victor Nistor - 通讯作者:
Victor Nistor
Layer potentials and boundary value problems for Laplacian in Lipschitz domains with data in quasi-Banach Besov spaces
- DOI:
10.1007/s10231-004-0125-5 - 发表时间:
2005-12-13 - 期刊:
- 影响因子:0.900
- 作者:
Svetlana Mayboroda;Marius Mitrea - 通讯作者:
Marius Mitrea
Higher degree layer potentials for non-smooth domains with arbitrary topology
- DOI:
10.1007/bf01192833 - 发表时间:
2000-12-01 - 期刊:
- 影响因子:0.900
- 作者:
Dorina Mitrea;Marius Mitrea - 通讯作者:
Marius Mitrea
Maximal regularity for the Lamé system in certain classes of non-smooth domains
- DOI:
10.1007/s00028-010-0071-1 - 发表时间:
2010-05-22 - 期刊:
- 影响因子:1.200
- 作者:
Marius Mitrea;Sylvie Monniaux - 通讯作者:
Sylvie Monniaux
The Generalized Hölder and Morrey-Campanato Dirichlet Problems for Elliptic Systems in the Upper Half-Space
- DOI:
10.1007/s11118-019-09793-9 - 发表时间:
2019-09-13 - 期刊:
- 影响因子:0.800
- 作者:
Juan José Marín;José María Martell;Marius Mitrea - 通讯作者:
Marius Mitrea
Marius Mitrea的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Marius Mitrea', 18)}}的其他基金
Singular Integrals, Smoothness Spaces, and Optimal Estimates for Elliptic and Parabolic Boundary Value Problems
椭圆和抛物线边值问题的奇异积分、平滑空间和最优估计
- 批准号:
0400639 - 财政年份:2004
- 资助金额:
$ 15.94万 - 项目类别:
Standard Grant
Calderon-Zygmund Operators on Sobolev-Besov Spaces and Boundary Problems with Minimal Smoothness Assumptions
Sobolev-Besov 空间上的 Calderon-Zygmund 算子和具有最小光滑度假设的边界问题
- 批准号:
0139801 - 财政年份:2002
- 资助金额:
$ 15.94万 - 项目类别:
Standard Grant
Global Boundary Value Problems With Minimal Smoothness Assumptions
具有最小平滑度假设的全局边值问题
- 批准号:
9870018 - 财政年份:1998
- 资助金额:
$ 15.94万 - 项目类别:
Standard Grant
相似国自然基金
Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:合作创新研究团队
Intelligent Patent Analysis for Optimized Technology Stack Selection:Blockchain BusinessRegistry Case Demonstration
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国学者研究基金项目
基于Meta-analysis的新疆棉花灌水增产模型研究
- 批准号:41601604
- 批准年份:2016
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大规模微阵列数据组的meta-analysis方法研究
- 批准号:31100958
- 批准年份:2011
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
用“后合成核磁共振分析”(retrobiosynthetic NMR analysis)技术阐明青蒿素生物合成途径
- 批准号:30470153
- 批准年份:2004
- 资助金额:22.0 万元
- 项目类别:面上项目
相似海外基金
Conference: Geometric Measure Theory, Harmonic Analysis, and Partial Differential Equations: Recent Advances
会议:几何测度理论、调和分析和偏微分方程:最新进展
- 批准号:
2402028 - 财政年份:2024
- 资助金额:
$ 15.94万 - 项目类别:
Standard Grant
Geometric Harmonic Analysis: Advances in Radon-like Transforms and Related Topics
几何调和分析:类氡变换及相关主题的进展
- 批准号:
2348384 - 财政年份:2024
- 资助金额:
$ 15.94万 - 项目类别:
Standard Grant
International Conference on Harmonic Analysis, Partial Differential Equations, and Geometric Measure Theory
调和分析、偏微分方程和几何测度理论国际会议
- 批准号:
2247067 - 财政年份:2023
- 资助金额:
$ 15.94万 - 项目类别:
Standard Grant
Harmonic analysis, additive combinatorics and geometric measure theory
调和分析、加性组合学和几何测度论
- 批准号:
RGPIN-2017-03755 - 财政年份:2022
- 资助金额:
$ 15.94万 - 项目类别:
Discovery Grants Program - Individual
Harmonic analysis, additive combinatorics and geometric measure theory
调和分析、加性组合学和几何测度论
- 批准号:
RGPIN-2017-03755 - 财政年份:2021
- 资助金额:
$ 15.94万 - 项目类别:
Discovery Grants Program - Individual
CAREER: Fractional Partial Differential Equations, Harmonic Analysis, and Their Applications in the Geometric Calculus of Variations and Quantitative Topology
职业:分数阶偏微分方程、调和分析及其在变分几何微积分和定量拓扑中的应用
- 批准号:
2044898 - 财政年份:2021
- 资助金额:
$ 15.94万 - 项目类别:
Continuing Grant
Geometric Harmonic Analysis: Affine and Frobenius-Hörmander Geometry
几何调和分析:仿射几何和 Frobenius-Hörmander 几何
- 批准号:
2054602 - 财政年份:2021
- 资助金额:
$ 15.94万 - 项目类别:
Standard Grant
Harmonic analysis, additive combinatorics and geometric measure theory
调和分析、加法组合学和几何测度论
- 批准号:
RGPIN-2017-03755 - 财政年份:2020
- 资助金额:
$ 15.94万 - 项目类别:
Discovery Grants Program - Individual
New development on higher order elliptic and parabolic PDEs -- cooperation between harmonic analysis and geometric analysis
高阶椭圆偏微分方程和抛物线偏微分方程的新进展——调和分析与几何分析的结合
- 批准号:
20KK0057 - 财政年份:2020
- 资助金额:
$ 15.94万 - 项目类别:
Fund for the Promotion of Joint International Research (Fostering Joint International Research (B))
Collaborative Research: Geometric Harmonic Analysis in Learning and Inference: Theory and Applications
合作研究:学习和推理中的几何调和分析:理论与应用
- 批准号:
1854831 - 财政年份:2019
- 资助金额:
$ 15.94万 - 项目类别:
Continuing Grant