Global Boundary Value Problems With Minimal Smoothness Assumptions
具有最小平滑度假设的全局边值问题
基本信息
- 批准号:9870018
- 负责人:
- 金额:$ 7.03万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:1998
- 资助国家:美国
- 起止时间:1998-08-01 至 2002-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The proposed research is concerned with the treatment of general, variable coefficient systems of equations of elliptic and parabolic type. Special attention will be paid to several key features of the theory. First, a strong emphasis is placed on problems having a global character. In particular, the topology of the underlying manifold is expected to play a significant role. Also, global integral representation formulas (in terms of multi-layer type operators) for the solution are sought. Second, minimal smoothness assumptions are to be made on the analytical and geometrical structures involved. In this context, a symbolic calculus is no longer readily available and, hence, the nature of the problems at hand is significantly altered. The overall objective is to undertake a systematic study of such problems via the modern tools of harmonic analysis and partial differential equations. Such problems are not only of a purely academic interest. Besides the mere understanding of the natural limits of the theory, this study is also motivated by real-life problems (like those involving domains with edges, corners or cracks, discontinuous coefficients and/or boundary data, non-homogeneous and/or anisotropic media) where non-smooth problems are considerably more abundant than smooth ones. Indeed, any realistic application, such as calculating the scattered wave from the body of an airplane, will have to confront some kind of roughness such as domains with non-smooth boundaries. Formulating the theory which ultimately allows for the design of efficient numerical algorithms for such problems will be one of the main goals of the proposed research.
所提出的研究涉及一般的变系数椭圆型和抛物型方程组的处理。我们将特别关注这一理论的几个关键特征。首先,对具有全球性的问题给予了高度重视。特别是,预计底层歧管的拓扑结构将发挥重要作用。同时,求出了解的全局积分表示式(用多层型算子表示)。其次,对所涉及的分析和几何结构进行最小光滑度假设。在这种情况下,符号演算不再容易获得,因此,手头问题的性质被显著改变。总体目标是通过调和分析和偏微分方程式等现代工具对这些问题进行系统研究。这样的问题不仅仅是纯粹的学术兴趣。除了对理论的自然极限的单纯理解外,这项研究还受到实际问题的推动(如涉及具有边、角或裂纹的区域、不连续的系数和/或边界数据、非均匀和/或各向异性介质),其中非光滑问题比光滑问题要丰富得多。事实上,任何实际的应用,如计算飞机机身的散射波,都必须面对某种粗糙度,例如具有非光滑边界的区域。形成最终允许为这类问题设计有效的数值算法的理论将是拟议研究的主要目标之一。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Marius Mitrea其他文献
Boundary value problems and layer potentials on manifolds with cylindrical ends
- DOI:
10.1007/s10587-007-0118-9 - 发表时间:
2007-12-01 - 期刊:
- 影响因子:0.500
- 作者:
Marius Mitrea;Victor Nistor - 通讯作者:
Victor Nistor
Layer potentials and boundary value problems for Laplacian in Lipschitz domains with data in quasi-Banach Besov spaces
- DOI:
10.1007/s10231-004-0125-5 - 发表时间:
2005-12-13 - 期刊:
- 影响因子:0.900
- 作者:
Svetlana Mayboroda;Marius Mitrea - 通讯作者:
Marius Mitrea
Higher degree layer potentials for non-smooth domains with arbitrary topology
- DOI:
10.1007/bf01192833 - 发表时间:
2000-12-01 - 期刊:
- 影响因子:0.900
- 作者:
Dorina Mitrea;Marius Mitrea - 通讯作者:
Marius Mitrea
Maximal regularity for the Lamé system in certain classes of non-smooth domains
- DOI:
10.1007/s00028-010-0071-1 - 发表时间:
2010-05-22 - 期刊:
- 影响因子:1.200
- 作者:
Marius Mitrea;Sylvie Monniaux - 通讯作者:
Sylvie Monniaux
The Generalized Hölder and Morrey-Campanato Dirichlet Problems for Elliptic Systems in the Upper Half-Space
- DOI:
10.1007/s11118-019-09793-9 - 发表时间:
2019-09-13 - 期刊:
- 影响因子:0.800
- 作者:
Juan José Marín;José María Martell;Marius Mitrea - 通讯作者:
Marius Mitrea
Marius Mitrea的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Marius Mitrea', 18)}}的其他基金
Harmonic Analysis, Geometric Measure Theory and Partial Differential Equations
调和分析、几何测度论和偏微分方程
- 批准号:
0653180 - 财政年份:2007
- 资助金额:
$ 7.03万 - 项目类别:
Continuing Grant
Singular Integrals, Smoothness Spaces, and Optimal Estimates for Elliptic and Parabolic Boundary Value Problems
椭圆和抛物线边值问题的奇异积分、平滑空间和最优估计
- 批准号:
0400639 - 财政年份:2004
- 资助金额:
$ 7.03万 - 项目类别:
Standard Grant
Calderon-Zygmund Operators on Sobolev-Besov Spaces and Boundary Problems with Minimal Smoothness Assumptions
Sobolev-Besov 空间上的 Calderon-Zygmund 算子和具有最小光滑度假设的边界问题
- 批准号:
0139801 - 财政年份:2002
- 资助金额:
$ 7.03万 - 项目类别:
Standard Grant
相似国自然基金
水稻边界发育缺陷突变体abnormal boundary development(abd)的基因克隆与功能分析
- 批准号:32070202
- 批准年份:2020
- 资助金额:58 万元
- 项目类别:面上项目
相似海外基金
Asymptotic analysis of boundary value problems for strongly inhomogeneous multi-layered elastic plates
强非均匀多层弹性板边值问题的渐近分析
- 批准号:
EP/Y021983/1 - 财政年份:2024
- 资助金额:
$ 7.03万 - 项目类别:
Research Grant
Parabolic and elliptic boundary value and free boundary problems
抛物线和椭圆边值以及自由边界问题
- 批准号:
2349846 - 财政年份:2024
- 资助金额:
$ 7.03万 - 项目类别:
Standard Grant
Geometric Boundary Value Problems in General Relativity
广义相对论中的几何边值问题
- 批准号:
2304966 - 财政年份:2023
- 资助金额:
$ 7.03万 - 项目类别:
Standard Grant
Mathematical analysis of the initial value boundary value problem of viscous flows with hyperbolic effects
具有双曲效应的粘性流初值边值问题的数学分析
- 批准号:
22K03374 - 财政年份:2022
- 资助金额:
$ 7.03万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
LEAPS-MPS: Analysis of Initial and Boundary Value Problems
LEAPS-MPS:初始值和边值问题的分析
- 批准号:
2247019 - 财政年份:2022
- 资助金额:
$ 7.03万 - 项目类别:
Standard Grant
LEAPS-MPS: Analysis of Initial and Boundary Value Problems
LEAPS-MPS:初始值和边值问题的分析
- 批准号:
2213427 - 财政年份:2022
- 资助金额:
$ 7.03万 - 项目类别:
Standard Grant
Using Exercise Boundary Fitting and Neural Networks to Value Real Options
使用运动边界拟合和神经网络来评估实物期权
- 批准号:
561980-2021 - 财政年份:2021
- 资助金额:
$ 7.03万 - 项目类别:
University Undergraduate Student Research Awards
LEAPS-MPS: Hybridizable discontinuous Galerkin methods for non-linear integro-differential boundary value problems in magnetic plasma confinement
LEAPS-MPS:磁等离子体约束中非线性积分微分边值问题的混合不连续伽辽金方法
- 批准号:
2137305 - 财政年份:2021
- 资助金额:
$ 7.03万 - 项目类别:
Standard Grant
Research on the well-posedness, regularity, and justification of numerical methods for fluid problems and related boundary-value problems
流体问题及相关边值问题数值方法的适定性、规律性和合理性研究
- 批准号:
20K14357 - 财政年份:2020
- 资助金额:
$ 7.03万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Advancement in viscosity solution theory: asymptotic and boundary value problems
粘度解理论的进展:渐近问题和边值问题
- 批准号:
20K03688 - 财政年份:2020
- 资助金额:
$ 7.03万 - 项目类别:
Grant-in-Aid for Scientific Research (C)