Harmonic Analysis of Waves and Eigenfunctions
波和本征函数的谐波分析
基本信息
- 批准号:0654415
- 负责人:
- 金额:$ 28.19万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2007
- 资助国家:美国
- 起止时间:2007-07-01 至 2013-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Harmonic Analysis of Waves and EigenfunctionsAbstract of Proposed ResearchHart F. SmithThis project will study solutions of hyperbolic equations in the setting of metrics of low regularity, and the behavior of eigenfunctions for such metrics. Our primary efforts will be to obtain Lp norm bounds on solutions and eigenfunctions, and quantifying the dependence of these bounds on the Holder smoothness of the media. An important issue is controlling the propagation of energy for solutions of rough hyperbolic equations. For rough media the geodesic flow is ill-posed, and geometric optics methods break down. Prior research has shown that some localization of energy is possible in rough settings. In this project we shall attempt to obtain optimal results on the possible degree of energy concentration and the rate of dispersion. The key tool to be used is a wave packet decomposition that provides approximate representations of the solution. Frequency dependent scaling arguments will be invoked to establish the short time scales on which waves in rough media exhibit classical dispersion. The investigator will also adapt the above methods to the study of waves and eigenfunctions on manifolds with boundary. This is done by reflecting the metric across the boundary to obtain a Lipschitz metric on an open set. The geometry of the resulting geodesic flow combines with the short scale bounds to establish optimal Lp bounds for eigenfunctions on manifolds with boundary.This research project will investigate stationary vibrational modes and travelling waves in rough media; a rough medium being one where the physics which governs the speed of waves changes abruptly from point to point. This will be done using a representation of travelling waves as a sum of coherent pulses, each of which moves in a very simple fashion. The investigator is able to quantify the degree to which vibrational modes and waves can concentrate, depending on the roughness of the underlying media. Such results are important for the study of nonlinear wave interactions and questions of the outside observability of vibrations and waves. They also provide information on the reflection of waves off obstacles. We will study how multiple reflections increase the concentration of travelling waves, and also show that waves reflecting off convex obstacles disperse at similar rates to waves travelling without reflection.
波的谐波分析与本征函数--拟研究摘要。本计画将研究双曲型方程在低正则度规下的解,以及这种度规的本征函数的行为。我们的主要努力将是获得Lp范数的解决方案和本征函数的界限,并量化这些界限的保持器光滑的媒体上的依赖。一个重要的问题是控制粗糙双曲型方程解的能量传播。对于粗糙介质,测地线流是不适定的,几何光学方法失效。先前的研究表明,在粗糙环境中,能量的某些局部化是可能的。在这个项目中,我们将试图获得最佳结果的可能程度的能量集中和分散率。要使用的关键工具是波包分解,提供近似的解决方案。 频率相关的标度参数将被调用来建立粗糙介质中的波表现出经典色散的短时间尺度。研究者还将把上述方法应用于研究有边界流形上的波和本征函数。这是通过在边界上反射度量以获得开集上的Lipschitz度量来完成的。由此产生的测地线流的几何形状结合短尺度边界,建立最佳Lp边界的特征函数的流形上的boundary.This研究项目将研究固定的振动模式和粗糙介质中的行波;一个粗糙的介质是一个物理支配波的速度突然改变从一点到另一点。这将使用行波表示为相干脉冲的总和来完成,每个脉冲以非常简单的方式移动。研究人员能够量化振动模式和波可以集中的程度,这取决于底层介质的粗糙度。这些结果对于研究非线性波的相互作用以及振动和波的外部可观测性问题具有重要意义。它们还提供了有关障碍物反射波的信息。我们将研究多次反射如何增加行波的集中度,并表明反射离开凸障碍物的波以与没有反射的波相似的速率传播。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Hart Smith其他文献
Hart Smith的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Hart Smith', 18)}}的其他基金
Harmonic Analysis of Waves and Eigenfunctions
波和本征函数的谐波分析
- 批准号:
1500098 - 财政年份:2015
- 资助金额:
$ 28.19万 - 项目类别:
Continuing Grant
Harmonic Analysis of Waves and Eigenfunctions
波和本征函数的谐波分析
- 批准号:
1161283 - 财政年份:2012
- 资助金额:
$ 28.19万 - 项目类别:
Continuing Grant
FRG Collaborative Proposal: Eigenfunctions of the Laplacian
FRG 合作提案:拉普拉斯算子的本征函数
- 批准号:
0354668 - 财政年份:2004
- 资助金额:
$ 28.19万 - 项目类别:
Standard Grant
Harmonic Analysis and Hyperbolic Partial Differential Equations
调和分析和双曲偏微分方程
- 批准号:
0140499 - 财政年份:2002
- 资助金额:
$ 28.19万 - 项目类别:
Continuing Grant
Harmonic Analysis and Hyperbolic Partial Differential Equations
调和分析和双曲偏微分方程
- 批准号:
9970407 - 财政年份:1999
- 资助金额:
$ 28.19万 - 项目类别:
Standard Grant
Mathematical Sciences: Harmonic Analysis and Hyperbolic Partial Differential Equations
数学科学:调和分析和双曲偏微分方程
- 批准号:
9622875 - 财政年份:1996
- 资助金额:
$ 28.19万 - 项目类别:
Standard Grant
Mathematical Sciences: Harmonic Analysis and Hyperbolic Partial Differential Equations
数学科学:调和分析和双曲偏微分方程
- 批准号:
9401855 - 财政年份:1994
- 资助金额:
$ 28.19万 - 项目类别:
Standard Grant
Mathematical Sciences: LP Regularity for Nonelliptic Differential Equations
数学科学:非椭圆微分方程的 LP 正则性
- 批准号:
9203904 - 财政年份:1992
- 资助金额:
$ 28.19万 - 项目类别:
Standard Grant
Mathematical Sciences: Postdoctoral Research Fellowship
数学科学:博士后研究奖学金
- 批准号:
8807277 - 财政年份:1988
- 资助金额:
$ 28.19万 - 项目类别:
Fellowship Award
相似国自然基金
Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:合作创新研究团队
Intelligent Patent Analysis for Optimized Technology Stack Selection:Blockchain BusinessRegistry Case Demonstration
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国学者研究基金项目
基于Meta-analysis的新疆棉花灌水增产模型研究
- 批准号:41601604
- 批准年份:2016
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大规模微阵列数据组的meta-analysis方法研究
- 批准号:31100958
- 批准年份:2011
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
用“后合成核磁共振分析”(retrobiosynthetic NMR analysis)技术阐明青蒿素生物合成途径
- 批准号:30470153
- 批准年份:2004
- 资助金额:22.0 万元
- 项目类别:面上项目
相似海外基金
Development and application of a non-hydrostatic quasi-3D analysis method for flood flows and waves to elucidate sediment dynamics in estuarine areas
洪水流和波浪的非静水准三维分析方法的开发和应用,以阐明河口地区的沉积物动态
- 批准号:
23K04050 - 财政年份:2023
- 资助金额:
$ 28.19万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Mathematical analysis on solitary waves for nonlinear dispersive equations
非线性色散方程孤立波的数学分析
- 批准号:
22K20337 - 财政年份:2022
- 资助金额:
$ 28.19万 - 项目类别:
Grant-in-Aid for Research Activity Start-up
Analysis of Free Boundaries: Contact Lines and Viscous Traveling Waves
自由边界分析:接触线和粘性行波
- 批准号:
2204912 - 财政年份:2022
- 资助金额:
$ 28.19万 - 项目类别:
Standard Grant
Advanced Signal Processing Methods for Analysis of Fibrillatory Waves
用于分析颤动波的先进信号处理方法
- 批准号:
RGPIN-2018-05540 - 财政年份:2022
- 资助金额:
$ 28.19万 - 项目类别:
Discovery Grants Program - Individual
WAVES - Waveform Analysis for Vehicles in Extreme Scenarios
WAVES - 极端场景下车辆波形分析
- 批准号:
560266-2020 - 财政年份:2022
- 资助金额:
$ 28.19万 - 项目类别:
Alliance Grants
Asymptotic analysis for partial differential equations of nonlinear waves with dissipation and dispersion
具有耗散和色散的非线性波偏微分方程的渐近分析
- 批准号:
22K13939 - 财政年份:2022
- 资助金额:
$ 28.19万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Direct and Inverse Scattering in Biharmonic Waves: Analysis and Computation
双谐波中的正向和逆向散射:分析和计算
- 批准号:
2208256 - 财政年份:2022
- 资助金额:
$ 28.19万 - 项目类别:
Continuing Grant
Numerical Analysis of Noise Reduction of Supersonic Jet by Micro Disturbance Using Beat Phenomena between Unstable Waves
利用不稳定波间拍频现象微扰动降低超音速射流噪声的数值分析
- 批准号:
22K03902 - 财政年份:2022
- 资助金额:
$ 28.19万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Development of data analysis toward the search for cosmological stochastic background of gravitational waves
寻找引力波宇宙学随机背景的数据分析的发展
- 批准号:
21K03580 - 财政年份:2021
- 资助金额:
$ 28.19万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Advanced Signal Processing Methods for Analysis of Fibrillatory Waves
用于分析颤动波的先进信号处理方法
- 批准号:
RGPIN-2018-05540 - 财政年份:2021
- 资助金额:
$ 28.19万 - 项目类别:
Discovery Grants Program - Individual