Harmonic Analysis of Waves and Eigenfunctions
波和本征函数的谐波分析
基本信息
- 批准号:1500098
- 负责人:
- 金额:$ 29.58万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-07-01 至 2019-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project studies the flow of energy, and the behavior of vibrational modes, for various mathematical models of physical systems. The principal investigator is introducing new mathematical tools that extend the understanding of energy flow phenomena to regimes that cannot be handled by standard analytical tools. Emphasis is placed on using methods that lend themselves to computational analysis. There is a long history of harmonic analysis tools finding application in signal and image processing, and the investigator's work involves developing similar tools for the study of wave propagation. One focus of the project is the reflection of waves from convex objects. The goal is to obtain a more precise understanding of how the wave disperses as it interacts with the boundary. Applications include control on the degree to which vibrational modes can concentrate near the boundary of a convex object. The project has another focus in the study of seismic waves, and more generally waves in elastic media. Seismic waves can involve both transverse and longitudinal displacements, and these components of the wave generally propagate at different speeds. A goal of the project is to estimate the order to which these distinct modes interact with each other as they propagate through highly heterogeneous media, such as the mixture of materials occurring within the earth. Practical implications include estimates on the error for computational models that treat the modes separately, and whether it is necessary to include their interaction in order to attain an assigned degree of accuracy. New methods will also be used in the study of decaying vibrational modes, known as resonant states. Example of systems with resonant states include microwave cavities, and quantum mechanical systems with potential barriers. Tools from harmonic analysis are used to study the existence of resonances, and to relate the number of resonances to properties of the system. All results of this project will be disseminated online, through open access websites.This project involves the use of harmonic analysis techniques to advance our understanding of waves and eigenfunctions in nonhomogeneous media. A main goal of the project is to show that, in various settings where the traditional mathematical methods of geometric optics do not apply, the rate of dispersion of waves is nevertheless the same as would be predicted by geometric optics. An example of a setting studied is rough media, modeled by manifolds with twice-differentiable metrics. The energy of waves passing through such media can scatter, and only imprecise knowledge on energy flow is available. Nevertheless, the principal investigator's work shows that one can obtain sufficient control on energy flow in such media to establish important results, such as dispersive estimates that are of interest in the fields of nonlinear wave and Schrodinger equations. A related application is bounding the degree to which eigenfunctions in such media can concentrate. Another example of significant importance is seismic waves, which can propagate at distinct speeds, depending on the nature of the initial displacement. The principal investigator's research investigates the transfer of energy between various seismic modes that is induced by the singularities in the media through which they propagate. Scattering of waves from convex obstacles is another focus of the project. In this part of the proposed research the goal is to obtain precise rates of energy decay in small regions of the boundary. The results would show that energy cannot concentrate near the boundary to a degree higher than predicted by geometric optics, and would lead to new dispersive estimates, with consequent results for the study of nonlinear equations on domains with obstacles. The investigator is also applying harmonic analysis to the study of resonances for Schrodinger operators with bounded potentials. A sharp relation between higher Sobolev regularity of the potential, and series expansions for the regularized heat trace, is established, which is then used to prove the existence of resonances for such potentials.
这个项目研究能量的流动,和振动模式的行为,为物理系统的各种数学模型。首席研究员正在引入新的数学工具,将对能量流现象的理解扩展到标准分析工具无法处理的领域。重点放在使用适合计算分析的方法上。谐波分析工具在信号和图像处理中的应用已有很长的历史,研究者的工作包括开发用于波传播研究的类似工具。该项目的一个重点是来自凸物体的波的反射。目标是更精确地了解波在与边界相互作用时如何分散。应用包括控制振动模式可以集中在凸物体边界附近的程度。该项目的另一个重点是研究地震波,以及更普遍的弹性介质中的波。地震波可以包括横向和纵向位移,这些波的分量通常以不同的速度传播。该项目的目标是估计这些不同模式在高度异质介质中传播时相互作用的顺序,例如在地球内部发生的材料混合物。实际意义包括对单独处理模态的计算模型的误差估计,以及是否有必要包括它们的相互作用以达到指定的精度程度。新的方法也将用于研究衰减的振动模式,即共振态。共振态系统的例子包括微波腔和具有势垒的量子力学系统。谐波分析的工具被用来研究共振的存在性,并将共振的数量与系统的性质联系起来。该项目的所有成果将通过开放获取网站在线发布。这个项目涉及使用谐波分析技术来推进我们对非均匀介质中的波和本征函数的理解。该项目的一个主要目标是表明,在几何光学的传统数学方法不适用的各种情况下,波的色散速率仍然与几何光学预测的速率相同。所研究的一个例子是粗糙介质,由具有两次可微度量的流形建模。通过这种介质的波的能量会分散,关于能量流的知识只能是不精确的。然而,首席研究员的工作表明,人们可以对这种介质中的能量流进行充分的控制,以建立重要的结果,例如在非线性波和薛定谔方程领域中感兴趣的色散估计。一个相关的应用是限定特征函数在这种介质中可以集中的程度。另一个重要的例子是地震波,它可以根据初始位移的性质以不同的速度传播。首席研究员的研究调查了各种地震模式之间的能量传递,这是由它们传播的介质中的奇点引起的。来自凸障碍物的波散射是该项目的另一个重点。在这部分研究中,我们的目标是在边界的小区域内获得精确的能量衰减率。结果表明,能量不能在边界附近集中到比几何光学预测的更高程度,并将导致新的色散估计,从而对有障碍区域上的非线性方程的研究产生影响。研究者还将谐波分析应用于有界势薛定谔算符的共振研究。建立了势的高索博列夫规则性与正则化热迹的级数展开之间的明显关系,然后用它来证明这些势的共振的存在。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Hart Smith其他文献
Hart Smith的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Hart Smith', 18)}}的其他基金
Harmonic Analysis of Waves and Eigenfunctions
波和本征函数的谐波分析
- 批准号:
1161283 - 财政年份:2012
- 资助金额:
$ 29.58万 - 项目类别:
Continuing Grant
Harmonic Analysis of Waves and Eigenfunctions
波和本征函数的谐波分析
- 批准号:
0654415 - 财政年份:2007
- 资助金额:
$ 29.58万 - 项目类别:
Continuing Grant
FRG Collaborative Proposal: Eigenfunctions of the Laplacian
FRG 合作提案:拉普拉斯算子的本征函数
- 批准号:
0354668 - 财政年份:2004
- 资助金额:
$ 29.58万 - 项目类别:
Standard Grant
Harmonic Analysis and Hyperbolic Partial Differential Equations
调和分析和双曲偏微分方程
- 批准号:
0140499 - 财政年份:2002
- 资助金额:
$ 29.58万 - 项目类别:
Continuing Grant
Harmonic Analysis and Hyperbolic Partial Differential Equations
调和分析和双曲偏微分方程
- 批准号:
9970407 - 财政年份:1999
- 资助金额:
$ 29.58万 - 项目类别:
Standard Grant
Mathematical Sciences: Harmonic Analysis and Hyperbolic Partial Differential Equations
数学科学:调和分析和双曲偏微分方程
- 批准号:
9622875 - 财政年份:1996
- 资助金额:
$ 29.58万 - 项目类别:
Standard Grant
Mathematical Sciences: Harmonic Analysis and Hyperbolic Partial Differential Equations
数学科学:调和分析和双曲偏微分方程
- 批准号:
9401855 - 财政年份:1994
- 资助金额:
$ 29.58万 - 项目类别:
Standard Grant
Mathematical Sciences: LP Regularity for Nonelliptic Differential Equations
数学科学:非椭圆微分方程的 LP 正则性
- 批准号:
9203904 - 财政年份:1992
- 资助金额:
$ 29.58万 - 项目类别:
Standard Grant
Mathematical Sciences: Postdoctoral Research Fellowship
数学科学:博士后研究奖学金
- 批准号:
8807277 - 财政年份:1988
- 资助金额:
$ 29.58万 - 项目类别:
Fellowship Award
相似国自然基金
Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:合作创新研究团队
Intelligent Patent Analysis for Optimized Technology Stack Selection:Blockchain BusinessRegistry Case Demonstration
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国学者研究基金项目
基于Meta-analysis的新疆棉花灌水增产模型研究
- 批准号:41601604
- 批准年份:2016
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大规模微阵列数据组的meta-analysis方法研究
- 批准号:31100958
- 批准年份:2011
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
用“后合成核磁共振分析”(retrobiosynthetic NMR analysis)技术阐明青蒿素生物合成途径
- 批准号:30470153
- 批准年份:2004
- 资助金额:22.0 万元
- 项目类别:面上项目
相似海外基金
Development and application of a non-hydrostatic quasi-3D analysis method for flood flows and waves to elucidate sediment dynamics in estuarine areas
洪水流和波浪的非静水准三维分析方法的开发和应用,以阐明河口地区的沉积物动态
- 批准号:
23K04050 - 财政年份:2023
- 资助金额:
$ 29.58万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Mathematical analysis on solitary waves for nonlinear dispersive equations
非线性色散方程孤立波的数学分析
- 批准号:
22K20337 - 财政年份:2022
- 资助金额:
$ 29.58万 - 项目类别:
Grant-in-Aid for Research Activity Start-up
Analysis of Free Boundaries: Contact Lines and Viscous Traveling Waves
自由边界分析:接触线和粘性行波
- 批准号:
2204912 - 财政年份:2022
- 资助金额:
$ 29.58万 - 项目类别:
Standard Grant
Advanced Signal Processing Methods for Analysis of Fibrillatory Waves
用于分析颤动波的先进信号处理方法
- 批准号:
RGPIN-2018-05540 - 财政年份:2022
- 资助金额:
$ 29.58万 - 项目类别:
Discovery Grants Program - Individual
WAVES - Waveform Analysis for Vehicles in Extreme Scenarios
WAVES - 极端场景下车辆波形分析
- 批准号:
560266-2020 - 财政年份:2022
- 资助金额:
$ 29.58万 - 项目类别:
Alliance Grants
Asymptotic analysis for partial differential equations of nonlinear waves with dissipation and dispersion
具有耗散和色散的非线性波偏微分方程的渐近分析
- 批准号:
22K13939 - 财政年份:2022
- 资助金额:
$ 29.58万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Direct and Inverse Scattering in Biharmonic Waves: Analysis and Computation
双谐波中的正向和逆向散射:分析和计算
- 批准号:
2208256 - 财政年份:2022
- 资助金额:
$ 29.58万 - 项目类别:
Continuing Grant
Numerical Analysis of Noise Reduction of Supersonic Jet by Micro Disturbance Using Beat Phenomena between Unstable Waves
利用不稳定波间拍频现象微扰动降低超音速射流噪声的数值分析
- 批准号:
22K03902 - 财政年份:2022
- 资助金额:
$ 29.58万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Development of data analysis toward the search for cosmological stochastic background of gravitational waves
寻找引力波宇宙学随机背景的数据分析的发展
- 批准号:
21K03580 - 财政年份:2021
- 资助金额:
$ 29.58万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Advanced Signal Processing Methods for Analysis of Fibrillatory Waves
用于分析颤动波的先进信号处理方法
- 批准号:
RGPIN-2018-05540 - 财政年份:2021
- 资助金额:
$ 29.58万 - 项目类别:
Discovery Grants Program - Individual