Topics in Nonlinear Functional Differential Equations

非线性函数微分方程主题

基本信息

  • 批准号:
    0701171
  • 负责人:
  • 金额:
    $ 12.5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2007
  • 资助国家:
    美国
  • 起止时间:
    2007-08-01 至 2013-07-31
  • 项目状态:
    已结题

项目摘要

Abstract for NSFDMS-0701171 (Nussbaum) Topics in Nonlinear Functional Differential Equations Nussbaum proposes a study of two related areas: (a) the dynamics in the large of nonlinear differential-delay equations with state dependent time lagsand (b) questions about maps F:C---C, where C is a closed cone in a Banach space and F is continuous, homogeneous of degree one and order-preserving in the partial ordering induced by C. The differential-delay equations to be studied are of the form (1) ax'(t)=f(x(t), x(t- r_1), x(t- r_2), ...,x(t- r_n)), where a0 and r_j may depend on the history of the function x or r_j :=r_j (x(t)) may simply be a function of x(t). A special class of maps of the type described above in topic (b) is provided by "generalized max-plus operators", which Nussbaum and J. Mallet-Paret have shown are intimately related to equation (1). Even very special cases of equation (1) remain terra incognita. One may mention, for example, the equation (2) ax'(t)= -x(t) - (k_1)x(t -r_1) -(k_2)x(t -r_2), where a0, k_j 0, r_j :=max(0, a_j +(c_j)x(t)), a_j 0 and c_j is unequal to 0. Areas which will be investigated include (a) periodic solutions of equation (1)(existence, stability and uniqueness), (b) singular perturbations, e.g., limiting behaviour of periodic solutions of eq. (1) as a---0, (c) regularity of solutions (real analyticity? Gevrey class?), (d) Poincare-Bendixson theory for equation (1) and (e) studies of cone-preserving maps F:C---C, both in their relation to differential-delay equations and to other applications. A wide variety of of scientific phenomena, notably in mathematical biology, but also in optics (e.g., semiconductor lasers) and control theory, have been modeled by differential-delay equations with multiple and/or variable time lags. Although our main focus is theoretical, we believe that progress in understanding important model equations like eq. (1) and eq. (2) above will provide insight into equations which arise in applications. The importance of an underlying theoretical framework is already apparent in numerical studies of eq. (2) which suggest a wide variety of dynamical behaviour depending on the parameters. In equations from applications, which typically have many parameters, the need for a theoretical framework is even more acute.
NSFDMS-0701171(Nussbaum)非线性泛函微分方程主题摘要 Nussbaum提出了两个相关领域的研究:(a)具有状态依赖时滞的非线性时滞微分方程的整体动力学;(B)关于映射F:C-C的问题,其中C是Banach空间中的闭锥,F是连续的、一次齐次的且在由C诱导的偏序中保序的。 所研究的微分时滞方程为(1)ax ′(t)=f(x(t),x(t-r_1),x(t-r_2),.,x(t-r_n)),其中a0和r_j可以取决于函数x的历史,或者r_j:=r_j(x(t))可以简单地是x(t)的函数。 在题目(B)中描述的一类特殊的映射由“广义最大-加算子”提供,Nussbaum和J. Mallet-Paret已经证明它与方程(1)密切相关。 甚至方程(1)的非常特殊的情况仍然是未知领域。 例如,可以提及等式(2)ax ′(t)= -x(t)-(k_1)x(t-r_1)-(k_2)x(t-r_2),其中a0,k_j 0,r_j =max(0,a_j +(c_j)x(t)),a_j 0和c_j不等于0。 将研究的领域包括(a)方程(1)的周期解(存在性、稳定性和唯一性),(B)奇异扰动,例如,方程周期解的极限行为(1)(c)解的正则性(真实的解析性?Gevrey类?),(d)方程(1)和(e)的Poincare-Bendixson理论,保锥映射F:C---C的研究,它们与微分延迟方程和其它应用的关系。 各种各样的科学现象,特别是在数学生物学,但也在光学(例如,半导体激光器)和控制理论已经通过具有多个和/或可变时滞的微分延迟方程来建模。 虽然我们的主要重点是理论,我们相信,在理解重要的模型方程,如方程的进展。(1)和等式(2)以上将提供对在应用中出现的方程的洞察。 一个基本的理论框架的重要性已经在EQ的数值研究中表现得很明显。(2)这表明取决于参数的各种各样的动力学行为。在应用程序的方程中,通常有许多参数,对理论框架的需求甚至更加迫切。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Roger Nussbaum其他文献

Periodic points of positive linear operators and Perron-Frobenius operators

Roger Nussbaum的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Roger Nussbaum', 18)}}的其他基金

Topics in Nonlinear Functional Differential Equations and the Computation of Hausdorff Dimension
非线性泛函微分方程与Hausdorff维数计算专题
  • 批准号:
    1201328
  • 财政年份:
    2012
  • 资助金额:
    $ 12.5万
  • 项目类别:
    Continuing Grant
Cone-Preserving Operators and Nonlinear Differential-Delay Equations
保锥算子和非线性微分时滞方程
  • 批准号:
    0401100
  • 财政年份:
    2004
  • 资助金额:
    $ 12.5万
  • 项目类别:
    Standard Grant
Topics in Nonlinear Difference and Differential-Delay Equations
非线性差分和微分时滞方程主题
  • 批准号:
    0070829
  • 财政年份:
    2000
  • 资助金额:
    $ 12.5万
  • 项目类别:
    Continuing Grant
U.S.- France Cooperative Research(INRIA): Control of Oscillations
美法合作研究(INRIA):振荡控制
  • 批准号:
    0001522
  • 财政年份:
    2000
  • 资助金额:
    $ 12.5万
  • 项目类别:
    Standard Grant
Boundary Layer Phenomena and Periodic Solutions for Functional Differential Equations
泛函微分方程的边界层现象和周期解
  • 批准号:
    9706891
  • 财政年份:
    1997
  • 资助金额:
    $ 12.5万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Solutions for Functional DifferentialEquations
数学科学:泛函微分方程的解
  • 批准号:
    9401823
  • 财政年份:
    1994
  • 资助金额:
    $ 12.5万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Boundary Layer Phenomena for Nonlinear Functional Differential Equations
数学科学:非线性泛函微分方程的边界层现象
  • 批准号:
    9105930
  • 财政年份:
    1991
  • 资助金额:
    $ 12.5万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Boundary Layer Phenomena for Functional Differential Equations and Means and Their Iterations
数学科学:泛函微分方程和均值及其迭代的边界层现象
  • 批准号:
    8903018
  • 财政年份:
    1989
  • 资助金额:
    $ 12.5万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Nonlinear Functional Analysis
数学科学:非线性泛函分析
  • 批准号:
    8803495
  • 财政年份:
    1988
  • 资助金额:
    $ 12.5万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Boundary Layer Phenomena for Singularly Perturbed Differential-Delay Equations
数学科学:奇异摄动微分时滞方程的边界层现象
  • 批准号:
    8713998
  • 财政年份:
    1987
  • 资助金额:
    $ 12.5万
  • 项目类别:
    Standard Grant

相似海外基金

Linear and nonlinear exciton dynamics with time-dependent density-functional theory
具有瞬态密度泛函理论的线性和非线性激子动力学
  • 批准号:
    2149082
  • 财政年份:
    2022
  • 资助金额:
    $ 12.5万
  • 项目类别:
    Continuing Grant
Integrability of nonlinear partial difference and functional equations: a singularity and entropy based approach
非线性偏差和函数方程的可积性:基于奇点和熵的方法
  • 批准号:
    22H01130
  • 财政年份:
    2022
  • 资助金额:
    $ 12.5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Elucidation of functional properties of nanoscale interfacial water by nonlinear spectroscopy
通过非线性光谱阐明纳米级界面水的功能特性
  • 批准号:
    22H00296
  • 财政年份:
    2022
  • 资助金额:
    $ 12.5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
New approaches in Functional Data Analysis: inference for incomplete or correlated data and nonlinear methods
函数数据分析的新方法:不完整或相关数据的推理以及非线性方法
  • 批准号:
    RGPIN-2020-07235
  • 财政年份:
    2022
  • 资助金额:
    $ 12.5万
  • 项目类别:
    Discovery Grants Program - Individual
New approaches in Functional Data Analysis: inference for incomplete or correlated data and nonlinear methods
函数数据分析的新方法:不完整或相关数据的推理以及非线性方法
  • 批准号:
    RGPIN-2020-07235
  • 财政年份:
    2021
  • 资助金额:
    $ 12.5万
  • 项目类别:
    Discovery Grants Program - Individual
Study of Nonlinear Functional Analysis based on Fixed Point Theory and Convex Analysis
基于不动点理论和凸分析的非线性泛函分析研究
  • 批准号:
    20K03660
  • 财政年份:
    2020
  • 资助金额:
    $ 12.5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Functional Inorganic Materials - New Ultraviolet and Deep-Ultraviolet Nonlinear Optical Materials
功能无机材料-新型紫外及深紫外非线性光学材料
  • 批准号:
    2002319
  • 财政年份:
    2020
  • 资助金额:
    $ 12.5万
  • 项目类别:
    Standard Grant
New approaches in Functional Data Analysis: inference for incomplete or correlated data and nonlinear methods
函数数据分析的新方法:不完整或相关数据的推理以及非线性方法
  • 批准号:
    DGECR-2020-00368
  • 财政年份:
    2020
  • 资助金额:
    $ 12.5万
  • 项目类别:
    Discovery Launch Supplement
New approaches in Functional Data Analysis: inference for incomplete or correlated data and nonlinear methods
函数数据分析的新方法:不完整或相关数据的推理以及非线性方法
  • 批准号:
    RGPIN-2020-07235
  • 财政年份:
    2020
  • 资助金额:
    $ 12.5万
  • 项目类别:
    Discovery Grants Program - Individual
Nonlinear Analysis of the Ballistocardiogram Artifact from Simultaneous Electroencephalography and Functional Magnetic Resonance Imaging Measurements
同步脑电图和功能磁共振成像测量的心冲击图伪影的非线性分析
  • 批准号:
    428688
  • 财政年份:
    2019
  • 资助金额:
    $ 12.5万
  • 项目类别:
    Studentship Programs
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了