Topics in Nonlinear Functional Differential Equations
非线性函数微分方程主题
基本信息
- 批准号:0701171
- 负责人:
- 金额:$ 12.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2007
- 资助国家:美国
- 起止时间:2007-08-01 至 2013-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Abstract for NSFDMS-0701171 (Nussbaum) Topics in Nonlinear Functional Differential Equations Nussbaum proposes a study of two related areas: (a) the dynamics in the large of nonlinear differential-delay equations with state dependent time lagsand (b) questions about maps F:C---C, where C is a closed cone in a Banach space and F is continuous, homogeneous of degree one and order-preserving in the partial ordering induced by C. The differential-delay equations to be studied are of the form (1) ax'(t)=f(x(t), x(t- r_1), x(t- r_2), ...,x(t- r_n)), where a0 and r_j may depend on the history of the function x or r_j :=r_j (x(t)) may simply be a function of x(t). A special class of maps of the type described above in topic (b) is provided by "generalized max-plus operators", which Nussbaum and J. Mallet-Paret have shown are intimately related to equation (1). Even very special cases of equation (1) remain terra incognita. One may mention, for example, the equation (2) ax'(t)= -x(t) - (k_1)x(t -r_1) -(k_2)x(t -r_2), where a0, k_j 0, r_j :=max(0, a_j +(c_j)x(t)), a_j 0 and c_j is unequal to 0. Areas which will be investigated include (a) periodic solutions of equation (1)(existence, stability and uniqueness), (b) singular perturbations, e.g., limiting behaviour of periodic solutions of eq. (1) as a---0, (c) regularity of solutions (real analyticity? Gevrey class?), (d) Poincare-Bendixson theory for equation (1) and (e) studies of cone-preserving maps F:C---C, both in their relation to differential-delay equations and to other applications. A wide variety of of scientific phenomena, notably in mathematical biology, but also in optics (e.g., semiconductor lasers) and control theory, have been modeled by differential-delay equations with multiple and/or variable time lags. Although our main focus is theoretical, we believe that progress in understanding important model equations like eq. (1) and eq. (2) above will provide insight into equations which arise in applications. The importance of an underlying theoretical framework is already apparent in numerical studies of eq. (2) which suggest a wide variety of dynamical behaviour depending on the parameters. In equations from applications, which typically have many parameters, the need for a theoretical framework is even more acute.
Abstract for NSFDMS-0701171 (Nussbaum) Topics in Nonlinear Functional Differential Equations Nussbaum proposes a study of two related areas: (a) the dynamics in the large of nonlinear differential-delay equations with state dependent time lagsand (b) questions about maps F:C---C, where C is a closed cone in a Banach space and F is continuous, homogeneous of degree one and在C诱导的部分顺序中订单推迟。要研究的差异延迟方程是(1)ax'(t)= f(x(x(t),x(t),x(t- r_1),x(t- r_2),...,...,x(t- r_n)),其中a0和r_j可能依赖于函数x或r_j的历史X或r_j(x) x(t)。 主题(b)中所述类型的特殊类图由“广义最大算子”提供,努斯鲍姆和J. Mallet-Paret已显示出与公式(1)密切相关的。 即使是非常特殊的方程式(1),仍然是terra隐身。 例如,可以提及方程式(2)ax'(t)= -x(t) - (k_1)x(k_1)x(t -r_1) - (k_2)x(t -r_2),其中a0,k_j 0,r_j:= max(0,a_j +(a_j +(c_j)(c_j)x(c_j)x(c_j)x(t)),a_j 0 and a_j 0和c_ equection(a_j equiention necountion necountion necountion necountion necountion necountion ne treque(a),为0。 (1)(存在,稳定性和唯一性),(b)奇异扰动,例如,等式的周期性解决方案的限制行为。 (1)作为A --- 0,(c)解决方案的规律性(实际分析性?Gevrey类?),(d)方程式(1)和(e)对锥形贴图图F:C --- c的研究,既与它们与差分 - 票房方程以及与其他应用有关的研究。 多种科学现象,尤其是在数学生物学中,但在光学(例如,半导体激光器)和控制理论中也是由具有多个和/或可变时间滞后的差分 - delay方程来建模的。 尽管我们的主要重点是理论上的重点,但我们认为,理解等式等重要模型方程式方面的进展。 (1)和等式。 (2)上面将提供有关应用程序中出现的方程式的见解。 在等式的数值研究中,基本理论框架的重要性已经显而易见。 (2)根据参数提出了多种动态行为。在通常具有许多参数的应用程序中的方程式中,对理论框架的需求更加急切。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Roger Nussbaum其他文献
Roger Nussbaum的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Roger Nussbaum', 18)}}的其他基金
Topics in Nonlinear Functional Differential Equations and the Computation of Hausdorff Dimension
非线性泛函微分方程与Hausdorff维数计算专题
- 批准号:
1201328 - 财政年份:2012
- 资助金额:
$ 12.5万 - 项目类别:
Continuing Grant
Cone-Preserving Operators and Nonlinear Differential-Delay Equations
保锥算子和非线性微分时滞方程
- 批准号:
0401100 - 财政年份:2004
- 资助金额:
$ 12.5万 - 项目类别:
Standard Grant
Topics in Nonlinear Difference and Differential-Delay Equations
非线性差分和微分时滞方程主题
- 批准号:
0070829 - 财政年份:2000
- 资助金额:
$ 12.5万 - 项目类别:
Continuing Grant
U.S.- France Cooperative Research(INRIA): Control of Oscillations
美法合作研究(INRIA):振荡控制
- 批准号:
0001522 - 财政年份:2000
- 资助金额:
$ 12.5万 - 项目类别:
Standard Grant
Boundary Layer Phenomena and Periodic Solutions for Functional Differential Equations
泛函微分方程的边界层现象和周期解
- 批准号:
9706891 - 财政年份:1997
- 资助金额:
$ 12.5万 - 项目类别:
Continuing Grant
Mathematical Sciences: Solutions for Functional DifferentialEquations
数学科学:泛函微分方程的解
- 批准号:
9401823 - 财政年份:1994
- 资助金额:
$ 12.5万 - 项目类别:
Continuing Grant
Mathematical Sciences: Boundary Layer Phenomena for Nonlinear Functional Differential Equations
数学科学:非线性泛函微分方程的边界层现象
- 批准号:
9105930 - 财政年份:1991
- 资助金额:
$ 12.5万 - 项目类别:
Continuing Grant
Mathematical Sciences: Boundary Layer Phenomena for Functional Differential Equations and Means and Their Iterations
数学科学:泛函微分方程和均值及其迭代的边界层现象
- 批准号:
8903018 - 财政年份:1989
- 资助金额:
$ 12.5万 - 项目类别:
Continuing Grant
Mathematical Sciences: Nonlinear Functional Analysis
数学科学:非线性泛函分析
- 批准号:
8803495 - 财政年份:1988
- 资助金额:
$ 12.5万 - 项目类别:
Standard Grant
Mathematical Sciences: Boundary Layer Phenomena for Singularly Perturbed Differential-Delay Equations
数学科学:奇异摄动微分时滞方程的边界层现象
- 批准号:
8713998 - 财政年份:1987
- 资助金额:
$ 12.5万 - 项目类别:
Standard Grant
相似国自然基金
一类功能梯度石墨烯增强智能结构的非线性动力特性研究
- 批准号:12362009
- 批准年份:2023
- 资助金额:31 万元
- 项目类别:地区科学基金项目
机构超材料的非线性连续表征与功能设计研究
- 批准号:12372089
- 批准年份:2023
- 资助金额:52 万元
- 项目类别:面上项目
小口径管道内行走的压电机器人结构功能一体化设计方法及非线性力学行为
- 批准号:12304528
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
基于多功能基元模块定向设计合成新型无机短波紫外非线性光学晶体
- 批准号:22375139
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
功能梯度薄板呼吸裂纹非线性动力表征与诊断研究
- 批准号:12302072
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Monkey-to-human transfer of trained iBCI decoders through nonlinear alignment of neural population dynamics
通过神经群体动态的非线性对齐,将经过训练的 iBCI 解码器从猴子转移到人类
- 批准号:
10791477 - 财政年份:2023
- 资助金额:
$ 12.5万 - 项目类别:
Linear and nonlinear exciton dynamics with time-dependent density-functional theory
具有瞬态密度泛函理论的线性和非线性激子动力学
- 批准号:
2149082 - 财政年份:2022
- 资助金额:
$ 12.5万 - 项目类别:
Continuing Grant
Integrability of nonlinear partial difference and functional equations: a singularity and entropy based approach
非线性偏差和函数方程的可积性:基于奇点和熵的方法
- 批准号:
22H01130 - 财政年份:2022
- 资助金额:
$ 12.5万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Elucidation of functional properties of nanoscale interfacial water by nonlinear spectroscopy
通过非线性光谱阐明纳米级界面水的功能特性
- 批准号:
22H00296 - 财政年份:2022
- 资助金额:
$ 12.5万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
New approaches in Functional Data Analysis: inference for incomplete or correlated data and nonlinear methods
函数数据分析的新方法:不完整或相关数据的推理以及非线性方法
- 批准号:
RGPIN-2020-07235 - 财政年份:2022
- 资助金额:
$ 12.5万 - 项目类别:
Discovery Grants Program - Individual