Topics in Nonlinear Difference and Differential-Delay Equations
非线性差分和微分时滞方程主题
基本信息
- 批准号:0070829
- 负责人:
- 金额:$ 7.8万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2000
- 资助国家:美国
- 起止时间:2000-08-01 至 2005-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The principal investigator will study questions related toso-called nonlinear "functional differential equations" and, separately,to questions concerning iterates of maps which do not increasedistance in some metric. Roughly speaking, a functional differentialequation is one in which the rate of change of an unknown functionx(t) depends not just on the value of x(t) itself but on the value ofx at certain earlier times. Such equations arise naturally in modelsfrom physiology and nonlinear optics. Mappings which do not increasedistance with respect to a norm on a finite dimensional vector spacecome up in many contexts, e.g., scheduling problems (the so-called"sup norm") and nonlinear generalizations of the theory ofcolumn-stochastic matrices (the so-called "ell-one norm"). The principal investigator will study questions concerning certainclasses of nonlinear functional differential equations. An example ofinterest is the the equation ax'(t)=f(x(t),x(t-r)), r:=r(x(t)), wheref and r are given functions and one is interested in the limiting"shape" of periodic solutions of such equations as a approacheszero. In a different direction the principal investigator will studyiterates of maps which are "nonexpansive", i.e., do not increasedistance with respect to a given metric. If the metric is the ell-onenorm on a finite dimensional vector space, one is led to a variety ofgeneralizations of the classical theory of column stochasticmatrices. The case that the metric comes from the sup norm arises inmany applications and has led to intriguing and apparently difficultconjectures concerning the maximal cardinality of a periodic orbit fora map which is nonexpansive in the sup norm on a finite dimensionalvector space.
主要研究者将研究与所谓的非线性“泛函微分方程”有关的问题,并分别研究与在某种度量中不增加距离的映射迭代有关的问题。粗略地说,泛函微分方程是这样一个方程,其中未知函数x(t)的变化率不仅取决于x(t)本身的值,还取决于x在某些较早时刻的值。这样的方程自然出现在生理学和非线性光学的模型中。关于有限维向量空间上的范数,不增加距离的映射出现在许多上下文中,例如,排序问题(所谓的“超范数”)和列随机矩阵理论的非线性推广(所谓的“ell-one范数”)。 主要研究者将研究与非线性泛函微分方程的某些类有关的问题。一个有趣的例子是方程ax ′(t)=f(x(t),x(t-r)),r:=r(x(t)),其中f和r是给定的函数,人们感兴趣的是这种方程的周期解的极限“形状”,因为a趋近于零。在一个不同的方向,主要研究人员将研究迭代的地图是“非扩张”,即,do not increase增加distance距离relative相对to a given给定metric度量.如果度量是有限维向量空间上的ell-on矩阵,则会导致列随机矩阵的经典理论的各种推广。度量来自于超范数的情况在许多应用中出现,并导致了关于有限维向量空间上在超范数下非扩张的映射的周期轨道的最大基数的有趣而显然困难的问题。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Roger Nussbaum其他文献
Periodic points of positive linear operators and Perron-Frobenius operators
- DOI:
10.1007/bf01192149 - 发表时间:
2001-03-01 - 期刊:
- 影响因子:0.900
- 作者:
Roger Nussbaum - 通讯作者:
Roger Nussbaum
Roger Nussbaum的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Roger Nussbaum', 18)}}的其他基金
Topics in Nonlinear Functional Differential Equations and the Computation of Hausdorff Dimension
非线性泛函微分方程与Hausdorff维数计算专题
- 批准号:
1201328 - 财政年份:2012
- 资助金额:
$ 7.8万 - 项目类别:
Continuing Grant
Topics in Nonlinear Functional Differential Equations
非线性函数微分方程主题
- 批准号:
0701171 - 财政年份:2007
- 资助金额:
$ 7.8万 - 项目类别:
Standard Grant
Cone-Preserving Operators and Nonlinear Differential-Delay Equations
保锥算子和非线性微分时滞方程
- 批准号:
0401100 - 财政年份:2004
- 资助金额:
$ 7.8万 - 项目类别:
Standard Grant
U.S.- France Cooperative Research(INRIA): Control of Oscillations
美法合作研究(INRIA):振荡控制
- 批准号:
0001522 - 财政年份:2000
- 资助金额:
$ 7.8万 - 项目类别:
Standard Grant
Boundary Layer Phenomena and Periodic Solutions for Functional Differential Equations
泛函微分方程的边界层现象和周期解
- 批准号:
9706891 - 财政年份:1997
- 资助金额:
$ 7.8万 - 项目类别:
Continuing Grant
Mathematical Sciences: Solutions for Functional DifferentialEquations
数学科学:泛函微分方程的解
- 批准号:
9401823 - 财政年份:1994
- 资助金额:
$ 7.8万 - 项目类别:
Continuing Grant
Mathematical Sciences: Boundary Layer Phenomena for Nonlinear Functional Differential Equations
数学科学:非线性泛函微分方程的边界层现象
- 批准号:
9105930 - 财政年份:1991
- 资助金额:
$ 7.8万 - 项目类别:
Continuing Grant
Mathematical Sciences: Boundary Layer Phenomena for Functional Differential Equations and Means and Their Iterations
数学科学:泛函微分方程和均值及其迭代的边界层现象
- 批准号:
8903018 - 财政年份:1989
- 资助金额:
$ 7.8万 - 项目类别:
Continuing Grant
Mathematical Sciences: Nonlinear Functional Analysis
数学科学:非线性泛函分析
- 批准号:
8803495 - 财政年份:1988
- 资助金额:
$ 7.8万 - 项目类别:
Standard Grant
Mathematical Sciences: Boundary Layer Phenomena for Singularly Perturbed Differential-Delay Equations
数学科学:奇异摄动微分时滞方程的边界层现象
- 批准号:
8713998 - 财政年份:1987
- 资助金额:
$ 7.8万 - 项目类别:
Standard Grant
相似海外基金
Nonlinear logarithmic difference operators and their application to structure-preserving numerical methods
非线性对数差分算子及其在保结构数值方法中的应用
- 批准号:
23K17655 - 财政年份:2023
- 资助金额:
$ 7.8万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
Integrability of nonlinear partial difference and functional equations: a singularity and entropy based approach
非线性偏差和函数方程的可积性:基于奇点和熵的方法
- 批准号:
22H01130 - 财政年份:2022
- 资助金额:
$ 7.8万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Meshfree Finite Difference Methods for Nonlinear Elliptic Equations
非线性椭圆方程的无网格有限差分法
- 批准号:
1619807 - 财政年份:2016
- 资助金额:
$ 7.8万 - 项目类别:
Standard Grant
Advanced nonlinear optics material models for improved finite difference time domain simulation capabilities
先进的非线性光学材料模型,用于改进有限差分时域仿真能力
- 批准号:
471065-2014 - 财政年份:2014
- 资助金额:
$ 7.8万 - 项目类别:
Engage Grants Program
Development of millimeter-wave/THz-wave generation devices utilizing a high-Q resonator and nonlinear-optical difference frequency generation
开发利用高Q谐振器和非线性光学差频发生的毫米波/太赫兹波发生装置
- 批准号:
24656233 - 财政年份:2012
- 资助金额:
$ 7.8万 - 项目类别:
Grant-in-Aid for Challenging Exploratory Research
Finite-difference time-domain simulation of nonlinear plasmonic waveguides
非线性等离子体波导的有限差分时域模拟
- 批准号:
384366-2009 - 财政年份:2009
- 资助金额:
$ 7.8万 - 项目类别:
University Undergraduate Student Research Awards
Quantization of difference nonlinear equation of Painleve type
Painleve型差分非线性方程的量化
- 批准号:
19540207 - 财政年份:2007
- 资助金额:
$ 7.8万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Research on comparisons of Global Properties of solutions of Non-linear Difference Equations and solutions of Nonlinear Phenomena.
非线性差分方程解与非线性现象解的全局性质比较研究。
- 批准号:
15540217 - 财政年份:2003
- 资助金额:
$ 7.8万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Symmetry and Complete Integrability of Nonlinear Difference Equations
非线性差分方程的对称性和完全可积性
- 批准号:
14340053 - 财政年份:2002
- 资助金额:
$ 7.8万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
On the construction of novel finite difference methods using nonlinear viscosities from image processing
利用图像处理中的非线性粘度构建新颖的有限差分方法
- 批准号:
5316398 - 财政年份:2001
- 资助金额:
$ 7.8万 - 项目类别:
Research Grants