Mathematical Sciences: Solutions for Functional DifferentialEquations

数学科学:泛函微分方程的解

基本信息

  • 批准号:
    9401823
  • 负责人:
  • 金额:
    $ 7.5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    1994
  • 资助国家:
    美国
  • 起止时间:
    1994-07-15 至 1998-06-30
  • 项目状态:
    已结题

项目摘要

9401823 Nussbaum Many natural phenomena, for example, in biology, seem best described by nonlinear "functional differential equations" or "FDE's". Roughly speaking, FDE's are equations in which an unknown function of time t, x(t), appears and x'(t), the instantaneous rate of change of x(t) with time, depends in a specified way not only on x(t) but also on the past history of the function x. For example,in some models the rate of increase of a population of a class of mature red blood cells at time t may well depend on population levels of those same mature cells six to ten days earlier. A rigorous mathematical theory of of nonlinear FDE's poses serious challenges and various equations of interest in applications have been neglected. We propose to study some classes of examples which were, until quite recently, considered intractable, but for which it now seems possible to obtain a wide variety of surprisingly detailed theorems. The starting point of this proposal is the study of the equation (*), ax'(t) = f(x(t),x(t-r)), r = r(x(t)), where f and r are given functions and a0. Equation (*) and generalizations of equation (*) arise in a variety of applications. In joint work with John Mallet-Paret, the author has shown that, under natural assumptions on f and r and for all sufficiently small a, equation (*) has nonconstant periodic solutions. These periodic solutions often seem to have strong global stability properties. Furthermore, in many cases it has proved possible to determine the limiting profile of shape of such periodic solutions as a approaches zero. In this proposal we consider many questions about equation (*), and we discuss possible extensions of results for (*) to much more general classes of equations.
小行星9401823 许多自然现象,例如,在生物学中,似乎最好的描述非线性“功能微分方程”或“FDE的”。 粗略地说,FDE是这样的方程,其中出现了一个未知的时间t函数x(t),x(t)随时间的瞬时变化率x '(t)不仅以特定的方式取决于x(t),而且还取决于函数x的过去历史。例如,在某些模型中,一类成熟红细胞在时间t的群体增长率很可能取决于6至10天前这些相同成熟细胞的群体水平。严格的数学理论的非线性FDE的提出了严重的挑战和各种方程的兴趣在应用中被忽视。我们建议研究一些类别的例子,直到最近,被认为是棘手的,但现在似乎有可能获得各种各样的令人惊讶的详细定理。 这个建议的出发点是研究方程(*),ax ′(t)= f(x(t),x(t-r)),r = r(x(t)),其中f和r是给定的函数,a0。方程(*)和方程(*)的推广出现在各种应用中。在与John Mallet-Paret的联合工作中,作者证明了,在关于f和r的自然假设下,对于所有充分小的a,方程(*)有非常数周期解。这些周期解通常具有很强的全局稳定性。 此外,在许多情况下,它已被证明是可能的,以确定这种周期性的解决方案作为一个接近零的形状的限制配置文件。在这个建议中,我们考虑了关于方程(*)的许多问题,并讨论了(*)的结果对更一般的方程类的可能扩展。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Roger Nussbaum其他文献

Periodic points of positive linear operators and Perron-Frobenius operators

Roger Nussbaum的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Roger Nussbaum', 18)}}的其他基金

Topics in Nonlinear Functional Differential Equations and the Computation of Hausdorff Dimension
非线性泛函微分方程与Hausdorff维数计算专题
  • 批准号:
    1201328
  • 财政年份:
    2012
  • 资助金额:
    $ 7.5万
  • 项目类别:
    Continuing Grant
Topics in Nonlinear Functional Differential Equations
非线性函数微分方程主题
  • 批准号:
    0701171
  • 财政年份:
    2007
  • 资助金额:
    $ 7.5万
  • 项目类别:
    Standard Grant
Cone-Preserving Operators and Nonlinear Differential-Delay Equations
保锥算子和非线性微分时滞方程
  • 批准号:
    0401100
  • 财政年份:
    2004
  • 资助金额:
    $ 7.5万
  • 项目类别:
    Standard Grant
Topics in Nonlinear Difference and Differential-Delay Equations
非线性差分和微分时滞方程主题
  • 批准号:
    0070829
  • 财政年份:
    2000
  • 资助金额:
    $ 7.5万
  • 项目类别:
    Continuing Grant
U.S.- France Cooperative Research(INRIA): Control of Oscillations
美法合作研究(INRIA):振荡控制
  • 批准号:
    0001522
  • 财政年份:
    2000
  • 资助金额:
    $ 7.5万
  • 项目类别:
    Standard Grant
Boundary Layer Phenomena and Periodic Solutions for Functional Differential Equations
泛函微分方程的边界层现象和周期解
  • 批准号:
    9706891
  • 财政年份:
    1997
  • 资助金额:
    $ 7.5万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Boundary Layer Phenomena for Nonlinear Functional Differential Equations
数学科学:非线性泛函微分方程的边界层现象
  • 批准号:
    9105930
  • 财政年份:
    1991
  • 资助金额:
    $ 7.5万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Boundary Layer Phenomena for Functional Differential Equations and Means and Their Iterations
数学科学:泛函微分方程和均值及其迭代的边界层现象
  • 批准号:
    8903018
  • 财政年份:
    1989
  • 资助金额:
    $ 7.5万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Nonlinear Functional Analysis
数学科学:非线性泛函分析
  • 批准号:
    8803495
  • 财政年份:
    1988
  • 资助金额:
    $ 7.5万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Boundary Layer Phenomena for Singularly Perturbed Differential-Delay Equations
数学科学:奇异摄动微分时滞方程的边界层现象
  • 批准号:
    8713998
  • 财政年份:
    1987
  • 资助金额:
    $ 7.5万
  • 项目类别:
    Standard Grant

相似国自然基金

Handbook of the Mathematics of the Arts and Sciences的中文翻译
  • 批准号:
    12226504
  • 批准年份:
    2022
  • 资助金额:
    20.0 万元
  • 项目类别:
    数学天元基金项目
SCIENCE CHINA: Earth Sciences
  • 批准号:
    41224003
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Journal of Environmental Sciences
  • 批准号:
    21224005
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
SCIENCE CHINA Information Sciences
  • 批准号:
    61224002
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
SCIENCE CHINA Technological Sciences
  • 批准号:
    51224001
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
SCIENCE CHINA Life Sciences (中国科学 生命科学)
  • 批准号:
    81024803
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Journal of Environmental Sciences
  • 批准号:
    21024806
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
SCIENCE CHINA Earth Sciences(中国科学:地球科学)
  • 批准号:
    41024801
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
SCIENCE CHINA Technological Sciences
  • 批准号:
    51024803
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目

相似海外基金

NSF/CBMS Regional Conference in the Mathematical Sciences - The Global Behavior of Solutions to Critical Nonlinear Wave Equations
NSF/CBMS 数学科学区域会议 - 临界非线性波动方程解的全局行为
  • 批准号:
    1240744
  • 财政年份:
    2012
  • 资助金额:
    $ 7.5万
  • 项目类别:
    Standard Grant
CBMS Regional Conference in the Mathematical Sciences - "Finite Morse Index Solutions and Related Topics" -Winter 2007
CBMS 数学科学区域会议 - “有限莫尔斯指数解决方案和相关主题” - 2007 年冬季
  • 批准号:
    0628079
  • 财政年份:
    2007
  • 资助金额:
    $ 7.5万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Structure of Solutions to Certain Equations in the Physical Sciences
数学科学:物理科学中某些方程解的结构
  • 批准号:
    9703711
  • 财政年份:
    1997
  • 资助金额:
    $ 7.5万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Geometric Properties of Solutions of Partial Differential Equations
数学科学:偏微分方程解的几何性质
  • 批准号:
    9896161
  • 财政年份:
    1997
  • 资助金额:
    $ 7.5万
  • 项目类别:
    Standard Grant
Mathematical Sciences: The Incompressible Euler Equations, the Vlasov-Poisson Equations, and Numerical Methods for Their Solutions
数学科学:不可压缩欧拉方程、弗拉索夫-泊松方程及其解的数值方法
  • 批准号:
    9622958
  • 财政年份:
    1996
  • 资助金额:
    $ 7.5万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Weak Solutions of Geometric Evolution Equations
数学科学:几何演化方程的弱解
  • 批准号:
    9626405
  • 财政年份:
    1996
  • 资助金额:
    $ 7.5万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Inverse Spectral Problems and Meromorphic Solutions of Differential Equations
数学科学:反谱问题和微分方程的亚纯解
  • 批准号:
    9623121
  • 财政年份:
    1996
  • 资助金额:
    $ 7.5万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Existence and Blow-Up of Solutions to Systems of Nonlinear Wave Equations
数学科学:非线性波动方程组解的存在性和放大
  • 批准号:
    9623207
  • 财政年份:
    1996
  • 资助金额:
    $ 7.5万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Geometric Properties of Solutions of Partial Differential Equations
数学科学:偏微分方程解的几何性质
  • 批准号:
    9623161
  • 财政年份:
    1996
  • 资助金额:
    $ 7.5万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Optical Solitons and Semiclassical Solutions of the Quantum Nonlinear Schrodinger Equation
数学科学:光学孤子和量子非线性薛定谔方程的半经典解
  • 批准号:
    9508711
  • 财政年份:
    1995
  • 资助金额:
    $ 7.5万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了