Accurate and Efficient Visual Simulation of Fiber-based Mechanical Structures

纤维机械结构的准确高效的视觉模拟

基本信息

  • 批准号:
    0702490
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2007
  • 资助国家:
    美国
  • 起止时间:
    2007-07-01 至 2011-03-31
  • 项目状态:
    已结题

项目摘要

Accurate and Efficient Visual Simulation of Fiber-based Mechanical StructuresSteve Marschner, Cornell UniversityMany of the most difficult challenges in simulation for computer graphics involve materials composed of fibers. In applications where appearance matters, from designing textiles and apparel to rendering virtual actors to formulating hair cosmetics, understanding how these materials' physical properties affect their motion and appearance is crucial. Fiber-based structures behave differently from other materials. A knit fabric is much more extensible than its component yarns because the yarns can bend and slide into different macroscopic shapes. A head of long hair moves freely but smoothly, making and breaking millions of hair-hair contacts to produce a partly smooth, partly discontinuous overall motion. This research aims to improve the accuracy of cloth and hair simulation by fundamentally changing the underlying physical and computational models.The project follows an approach of measurement, modeling, simulation, and validation. Image-based measurement is used to capture complete fabric deformations. This data, together with the literature on yarn-level textile mechanics, is used to develop constitutive models based on the actual physics of fabric, which are simulated using advanced numerical methods not normally employed in textile simulation. The results are being evaluated both against the laboratory data and in the context of real problems in apparel design. By bringing together the tools of modern graphics and simulation with the detailed models of textile mechanics in a rigorous process of validation, this project is placing computer graphics cloth simulation on a firm scientific foundation for the future. Computational methods devised for fiber-fiber interactions are also being extended for efficient strand-level simulation of hair. After the simulations are validated, the project will examine approximations and algorithms to allow efficient simulation. The end result will be new, physics-based models for the mechanics of cloth and hair that are appropriate for visual applications.
精确高效的纤维基机械结构可视化仿真Steve Marschner,康奈尔大学计算机图形学仿真中许多最困难的挑战都涉及由纤维组成的材料。在外观很重要的应用中,从设计纺织品和服装到渲染虚拟演员再到配制头发化妆品,了解这些材料的物理特性如何影响它们的运动和外观至关重要。基于纤维的结构与其他材料的行为不同。 针织物比其组分纱线更具有延展性,因为纱线可以弯曲并滑动成不同的宏观形状。 一头长发自由而平稳地运动,形成和断开数百万根头发与头发的接触,从而产生一种部分平滑、部分不连续的整体运动。 本研究的目的是从根本上改变基本的物理和计算模型,以提高布料和头发模拟的准确性。该项目遵循测量,建模,模拟和验证的方法。 基于图像的测量用于捕获完整的织物变形。 这些数据,连同文献纱线级纺织力学,是用来开发本构模型的基础上,织物的实际物理,这是模拟使用先进的数值方法,通常不采用纺织模拟。 结果正在评估对实验室数据和服装设计中的真实的问题的背景下。通过在严格的验证过程中将现代图形和模拟工具与纺织力学的详细模型结合在一起,该项目将计算机图形织物模拟置于未来的坚实科学基础上。 设计用于纤维-纤维相互作用的计算方法也被扩展用于有效的头发束级模拟。 在模拟得到验证后,该项目将检查近似值和算法,以实现有效的模拟。 最终的结果将是新的,基于物理的模型,适用于视觉应用的布料和头发的力学。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Steve Marschner其他文献

Measuring and modeling the appearance of finished wood
测量和建模成品木材的外观
  • DOI:
  • 发表时间:
    2005
  • 期刊:
  • 影响因子:
    6.2
  • 作者:
    Steve Marschner;Stephen H. Westin;A. Arbree;Jonathan T. Moon
  • 通讯作者:
    Jonathan T. Moon
Visual Texture
视觉质感
Estimating dual-scale properties of glossy surfaces from step-edge lighting
通过阶梯边缘照明估计光泽表面的双尺度特性
  • DOI:
  • 发表时间:
    2011
  • 期刊:
  • 影响因子:
    6.2
  • 作者:
    Chun;Noah Snavely;Steve Marschner
  • 通讯作者:
    Steve Marschner
Reflectance Measurements of Human Skin
人体皮肤的反射率测量
  • DOI:
  • 发表时间:
    1999
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Steve Marschner;Stephen H. Westin;Eric P. Lafortune;K. Torrance;D. Greenberg
  • 通讯作者:
    D. Greenberg
Brush stroke synthesis with a generative adversarial network driven by physically based simulation
通过基于物理的模拟驱动的生成对抗网络进行笔触合成
  • DOI:
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Rundong Wu;Zhili Chen;Zhaowen Wang;Jimei Yang;Steve Marschner
  • 通讯作者:
    Steve Marschner

Steve Marschner的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Steve Marschner', 18)}}的其他基金

Collaborative Research: HCC: Medium: Neural Materials for Realistic Computer Graphics
合作研究:HCC:媒介:用于逼真计算机图形的神经材料
  • 批准号:
    2212084
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
CHS: Small: A wave optics foundation for predictive materials in computer graphics
CHS:小:计算机图形学中预测材料的波动光学基础
  • 批准号:
    1909467
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
CHS: Medium: Collaborative Research: Fast Photorealistic Computer Graphics Rendering of Non-Smooth Surfaces
CHS:媒介:协作研究:非光滑表面的快速真实感计算机图形渲染
  • 批准号:
    1704540
  • 财政年份:
    2017
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
CM/Collaborative Research: Simulation-based Software Tools for Automated Knitting
CM/协作研究:基于仿真的自动针织软件工具
  • 批准号:
    1644523
  • 财政年份:
    2016
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
CHS: Medium: Collaborative Research: Integrated Simulation of Cloth Mechanics and Appearance for Predictive Virtual Prototyping
CHS:媒介:协作研究:用于预测虚拟原型制作的布料力学和外观集成仿真
  • 批准号:
    1513967
  • 财政年份:
    2015
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
HCC: Large: Collaborative Research: Beyond Flat Images: Acquiring, Processing and Fabricating Visually Rich Material Appearance
HCC:大型:协作研究:超越平面图像:获取、处理和制造视觉丰富的材料外观
  • 批准号:
    1011919
  • 财政年份:
    2010
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Unifying Geometric and Volumetric Light Scattering for Accurate Rendering of Dense Geometry
统一几何和体积光散射以精确渲染密集几何
  • 批准号:
    0541105
  • 财政年份:
    2006
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
CAREER: Modeling the Properties and Appearance of Materials
职业:对材料的属性和外观进行建模
  • 批准号:
    0347303
  • 财政年份:
    2004
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant

相似海外基金

CAREER: Efficient coding of visual,structural, and semantic scene information
职业:视觉、结构和语义场景信息的高效编码
  • 批准号:
    2240815
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
RI: Small: Toward Efficient and Robust Dynamic Scene Understanding Based on Visual Correspondences
RI:小:基于视觉对应的高效、鲁棒的动态场景理解
  • 批准号:
    2310254
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Efficient visual learning with reduced supervision
有效的视觉学习,减少监督
  • 批准号:
    RGPIN-2018-04825
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
HausBots: De-risking the inspection of industrial storage tanks, via a cost efficient, wall climbing, ultrasonic probe robot that generates 3D visual representations of hazardous industrial confined spaces
HausBots:通过具有成本效益的爬壁超声波探头机器人,生成危险工业密闭空间的 3D 视觉表示,降低工业储罐检查的风险
  • 批准号:
    10032554
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Collaborative R&D
Efficient visual learning with reduced supervision
有效的视觉学习,减少监督
  • 批准号:
    RGPIN-2018-04825
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Efficient visual learning with reduced supervision
有效的视觉学习,减少监督
  • 批准号:
    RGPIN-2018-04825
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
SHF: Small: Collaborative Research: Software-Defined Imaging for Energy-Efficient Visual Computing
SHF:小型:协作研究:用于节能视觉计算的软件定义成像
  • 批准号:
    1909073
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
The role of familiarity and experience in the implementation of efficient visual search strategies
熟悉度和经验在实施高效视觉搜索策略中的作用
  • 批准号:
    ES/S016120/1
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    Research Grant
Efficient visual learning with reduced supervision
有效的视觉学习,减少监督
  • 批准号:
    RGPIN-2018-04825
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
SHF: Small: Collaborative Research: Software-Defined Imaging for Energy-Efficient Visual Computing
SHF:小型:协作研究:用于节能视觉计算的软件定义成像
  • 批准号:
    1909663
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了