Modeling and Forecasting Multivariate and Nonlinear Time Series, and Analysis of Complex Survey Data

多元和非线性时间序列的建模和预测以及复杂调查数据的分析

基本信息

  • 批准号:
    RGPIN-2020-05016
  • 负责人:
  • 金额:
    $ 1.31万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2020
  • 资助国家:
    加拿大
  • 起止时间:
    2020-01-01 至 2021-12-31
  • 项目状态:
    已结题

项目摘要

In many areas of the human activity, large and complex data sets need to be described, synthetized and analyzed. Exemples include observations that are measured over time and also survey data which arise with samples coming from complex survey designs. The statistical analysis of time series data deals with dependent data and the methods need to take into account that characteristic. The second component of the research proposal is on survey sampling, and the nature of survey data also calls for special techniques, taking into consideration how the observations are collected, in addition to the model structure of the data. Examples of applications include data coming from the social sciences and national statistical offices or coming from the physical sciences. Our research plays a central role in evaluating theories of the statistical models, and in procuring predictions and forecasting methods which are fundamental components in the decision making process. In the first axis of this research program, questions involve the observations of a sequence of time-ordered data, obtained from some phenomenon measured over time. A univariate time series is composed of a single variable of interest. Here, special attention is also given when multivariate time series are available, that is several variables are collected over time, and exogenous variables may also be part of the dynamic system. Econometric modelling of stock market intraday activity, high-frequency data, represent natural examples of applications which involve a large number of observations, and statistical tools have been proposed to model such complex data. To check the specification of the error term of statistical models, and development of valid forecasting methods, represent topics which need more developments. In this research proposal, we seek to propose new multivariate models and to develop innovative forecasting tools. We are also interested in statistical models allowing for seasonal, periodic and spatial behaviours; observed data coming from the physical sciences such as statistical hydrology, present these characteristics and we plan to study such applications. In the second axis, complex surveys call for special techniques taking into account how the data are collected, because typically survey weights are available. A goal of this research is to pursue the development of techniques in these directions for data coming from complex survey designs. We will pursue an on-going project on small area estimation, but we will also consider the study of calibration methods for multivariate data and models in the presence of non-response. The applications of these developments will provide a better understanding of phenomena coming from social sciences and from official agencies. To reach these goals, advanced techniques in survey sampling will be combined with multivariate analysis techniques. This will lead to important gains in efficiency for the proposed methodologies.
在人类活动的许多领域中,需要对大量复杂的数据集进行描述、综合和分析。示例包括随时间测量的观测值以及来自复杂调查设计的样本产生的调查数据。时间序列数据的统计分析处理相关数据,方法需要考虑到这一特性。研究建议的第二个组成部分是调查抽样,调查数据的性质也要求采用特殊技术,除数据的模型结构外,还要考虑到如何收集观察结果。应用的例子包括来自社会科学和国家统计局或来自自然科学的数据。 我们的研究在评估统计模型的理论,以及采购预测和预测方法方面发挥着核心作用,这些预测和预测方法是决策过程中的基本组成部分。在这个研究计划的第一个轴中,问题涉及对一系列时间顺序数据的观察,这些数据是从随时间测量的一些现象中获得的。 单变量时间序列由单个感兴趣的变量组成。 在这里,当多变量时间序列可用时,也要特别注意,即随着时间的推移收集多个变量,并且外生变量也可能是动态系统的一部分。股票市场日内活动的计量经济学建模,高频数据,是涉及大量观测的应用的自然例子,已经提出了统计工具来模拟这种复杂的数据。 检验统计模型的误差项的规格,并开发有效的预测方法,代表了需要更多发展的主题。 在这项研究计划中,我们寻求提出新的多变量模型,并开发创新的预测工具。 我们还对考虑季节性、周期性和空间行为的统计模型感兴趣;来自统计水文学等物理科学的观测数据呈现了这些特征,我们计划研究这些应用。在第二个轴中,复杂的调查需要考虑到数据收集方式的特殊技术,因为通常调查权重是可用的。本研究的一个目标是追求这些方向的数据来自复杂的调查设计的技术的发展。我们将继续进行一个关于小面积估计的项目,但我们也将考虑在无响应的情况下研究多变量数据和模型的校准方法。这些发展的应用将使人们更好地理解来自社会科学和官方机构的现象。 为了达到这些目标,调查抽样的先进技术将与多变量分析技术相结合。这将大大提高拟议方法的效率。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Duchesne, Pierre其他文献

PERM:: a computer program to detect structuring factors in social units
  • DOI:
    10.1111/j.1471-8286.2006.01414.x
  • 发表时间:
    2006-12-01
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Duchesne, Pierre;Etienne, Cedric;Bernatchez, Louis
  • 通讯作者:
    Bernatchez, Louis
Computing the distribution of quadratic forms: Further comparisons between the Liu-Tang-Zhang approximation and exact methods
  • DOI:
    10.1016/j.csda.2009.11.025
  • 发表时间:
    2010-04-01
  • 期刊:
  • 影响因子:
    1.8
  • 作者:
    Duchesne, Pierre;De Micheaux, Pierre Lafaye
  • 通讯作者:
    De Micheaux, Pierre Lafaye
Groups of related belugas (Delphinapterus leucas) travel together during their seasonal migrations in and around Hudson Bay
FLOCK Provides Reliable Solutions to the "Number of Populations" Problem
  • DOI:
    10.1093/jhered/ess038
  • 发表时间:
    2012-09-01
  • 期刊:
  • 影响因子:
    3.1
  • 作者:
    Duchesne, Pierre;Turgeon, Julie
  • 通讯作者:
    Turgeon, Julie

Duchesne, Pierre的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Duchesne, Pierre', 18)}}的其他基金

Modeling and Forecasting Multivariate and Nonlinear Time Series, and Analysis of Complex Survey Data
多元和非线性时间序列的建模和预测以及复杂调查数据的分析
  • 批准号:
    RGPIN-2020-05016
  • 财政年份:
    2022
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual
Modeling and Forecasting Multivariate and Nonlinear Time Series, and Analysis of Complex Survey Data
多元和非线性时间序列的建模和预测以及复杂调查数据的分析
  • 批准号:
    RGPIN-2020-05016
  • 财政年份:
    2021
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual
Statistical Modeling and Analysis for Multivariate and Nonlinear Time Series and for Complex Survey Data
多元和非线性时间序列以及复杂调查数据的统计建模和分析
  • 批准号:
    RGPIN-2015-04704
  • 财政年份:
    2019
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual
Statistical Modeling and Analysis for Multivariate and Nonlinear Time Series and for Complex Survey Data
多元和非线性时间序列以及复杂调查数据的统计建模和分析
  • 批准号:
    RGPIN-2015-04704
  • 财政年份:
    2018
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual
Statistical Modeling and Analysis for Multivariate and Nonlinear Time Series and for Complex Survey Data
多元和非线性时间序列以及复杂调查数据的统计建模和分析
  • 批准号:
    RGPIN-2015-04704
  • 财政年份:
    2017
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual
Statistical Modeling and Analysis for Multivariate and Nonlinear Time Series and for Complex Survey Data
多元和非线性时间序列以及复杂调查数据的统计建模和分析
  • 批准号:
    RGPIN-2015-04704
  • 财政年份:
    2016
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual
Statistical Modeling and Analysis for Multivariate and Nonlinear Time Series and for Complex Survey Data
多元和非线性时间序列以及复杂调查数据的统计建模和分析
  • 批准号:
    RGPIN-2015-04704
  • 财政年份:
    2015
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual
Modelling and diagnostic checking multivariate and nonlinear time series
多元和非线性时间序列建模和诊断检查
  • 批准号:
    238438-2010
  • 财政年份:
    2014
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual
Modelling and diagnostic checking multivariate and nonlinear time series
多元和非线性时间序列建模和诊断检查
  • 批准号:
    238438-2010
  • 财政年份:
    2013
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual
Modelling and diagnostic checking multivariate and nonlinear time series
多元和非线性时间序列建模和诊断检查
  • 批准号:
    238438-2010
  • 财政年份:
    2012
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Discovery Grants Program - Individual

相似海外基金

MULTI-STRESS: Quantifying the impacts of multiple stressors in multiple dimensions to improve ecological forecasting
多重压力:在多个维度量化多种压力源的影响,以改进生态预测
  • 批准号:
    NE/Z000130/1
  • 财政年份:
    2024
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Research Grant
LTREB: Integrating real-time open data pipelines and forecasting to quantify ecosystem predictability at day to decadal scales
LTREB:集成实时开放数据管道和预测,以量化每日到十年尺度的生态系统可预测性
  • 批准号:
    2327030
  • 财政年份:
    2024
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Continuing Grant
Solar Forecasting And Future Sustainable Power Systems
太阳能预测和未来可持续电力系统
  • 批准号:
    2908163
  • 财政年份:
    2024
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Studentship
Cross-scale forecasting of Everglades wading bird dynamics
大沼泽地涉水鸟动态的跨尺度预测
  • 批准号:
    2326954
  • 财政年份:
    2024
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Continuing Grant
Towards the next generation probabilistic flood forecasting system for the UK
英国下一代概率洪水预报系统
  • 批准号:
    2907694
  • 财政年份:
    2024
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Studentship
SBIR Phase I: Subseasonal Forecasting and Climate Risk Analytics Combining Physics and AI
SBIR 第一阶段:结合物理和人工智能的次季节预报和气候风险分析
  • 批准号:
    2335210
  • 财政年份:
    2024
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Standard Grant
Water IMPACT: Water emissions forecasting tool to Introduce the Modelling Potential of water quality Actions to reach Climate-change Targets
水影响:水排放预测工具,介绍水质建模潜力 实现气候变化目标的行动
  • 批准号:
    10103499
  • 财政年份:
    2024
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Collaborative R&D
Integrating and scaling seasonal climate-driven dengue forecasting
整合和扩展季节性气候驱动的登革热预测
  • 批准号:
    MR/Y004663/1
  • 财政年份:
    2024
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Research Grant
Solar forecasting and future sustainable power systems
太阳能预测和未来可持续电力系统
  • 批准号:
    2905679
  • 财政年份:
    2024
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Studentship
EAGER: IMPRESS-U: Modeling and Forecasting of Infection Spread in War and Post War Settings Using Epidemiological, Behavioral and Genomic Surveillance Data
EAGER:IMPRESS-U:使用流行病学、行为和基因组监测数据对战争和战后环境中的感染传播进行建模和预测
  • 批准号:
    2412914
  • 财政年份:
    2024
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了