Fractal Geometry and Applications
分形几何及其应用
基本信息
- 批准号:0707524
- 负责人:
- 金额:$ 13万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2007
- 资助国家:美国
- 起止时间:2007-08-01 至 2012-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project pursues and amplifies the PI's earlier investigations of the relationships between fractal geometry, spectral geometry, and dynamical systems. We plan to study the vibrations of "fractal drums," both "drums with fractal boundary" (Laplacians on open sets with very irregular boundary) and "drums with fractal membrane" (Laplacians on fractals themselves), "fractal billiards," as well as the associated "complex fractal dimensions" (a suitable measure of the oscillations intrinsic to nonsmooth geometries and their spectra) and "fractal curvatures" (a suitable measure of the way space warps in a fractal space). Although the proposed theory is mathematically rigorous, it is also naturally physically motivated (with, e.g., applications to the scattering of waves by fractal surfaces and to the study of porous media), and has recently drawn (and will continue to draw) its impetus from the use of computer graphics and computer experiments. We also intend to pursue our mathematical and computer graphics aided study of partial differential equations such as the Laplace, heat, and wave equations on regions with fractal boundary or on fractals themselves.The proposed problems are closely connected to Mark Kac's question "Can one hear the shape of a drum?" and to its beautiful extensions from the "smooth" to the "fractal" domain by Michael Berry. The expected results should be of physical significance in condensed matter and solid state physics; for example, in the study of mechanical or electrical transport in porous or in random media, as well as of heat diffusions on fractals and in disordered systems. They should also be relevant to subterranean imaging and the study of the way information and electromagnetic signals propagate across rough terrain. (Recent engineering and physical applications include new types of cell phones, fractal antennas, loudspeakers, heat insulators, nearly optimal soundproof walls, radar detection, catalytic chemical reactions, and computer microchips.) This work may help understand the formation of fractal structures (e.g. coastlines, trees and blood vessels) in nature as well as the reason why certain biological structures, such as lungs, are both fractal and nearly optimal to fulfill their biological functions.
这个项目是对PI早期关于分形学、谱几何学和动力系统之间关系的研究的继续和深化。我们计划研究“分形鼓”的振动,包括“带分形边界的鼓”(具有非常不规则边界的开集上的拉普拉斯)和“带分形膜的鼓”(分形上的拉普拉斯人本身),“分形台球”,以及与之相关的“复分形维”(一种适当的测量非光滑几何及其频谱固有的振荡的量度)和“分形曲率”(一种适当的量度空间在分维空间中扭曲的方式)。虽然提出的理论在数学上是严格的,但它也是自然的物理动机(例如,应用于分形表面的波散射和多孔介质的研究),最近从计算机图形学和计算机实验的使用中获得了(并将继续获得)它的推动力。我们还打算继续我们的数学和计算机图形辅助研究偏微分方程组,如拉普拉斯方程,热方程和波动方程,在具有分形边界的区域上或在分形本身上。所提出的问题与Mark Kac的问题密切相关:人们能听到鼓的形状吗?以及迈克尔·贝里从“平滑”领域到“分形”领域的美丽延伸。预期的结果应该在凝聚态和固态物理学中具有物理意义;例如,在研究多孔或随机介质中的机械或电子传输,以及在分形学和无序系统中的热扩散。它们还应该与地下成像和研究信息和电磁信号在崎岖地形上传播的方式有关。(最近的工程和物理应用包括新型手机、分形天线、扬声器、隔热材料、近乎最佳的隔音墙、雷达探测、催化化学反应和计算机微芯片。)这项工作可能有助于理解自然界中分形结构(如海岸线、树木和血管)的形成,以及为什么某些生物结构,如肺,既是分形的,又是履行其生物功能的近乎最佳的结构。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Michel Lapidus其他文献
Michel Lapidus的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Michel Lapidus', 18)}}的其他基金
Fractal Geometry and Dynamical Systems, with Applications
分形几何和动力系统及其应用
- 批准号:
1107750 - 财政年份:2011
- 资助金额:
$ 13万 - 项目类别:
Standard Grant
Analysis, Geometry, and Spectral Theory On or Off Fractals
分形或非分形的分析、几何和谱理论
- 批准号:
0070497 - 财政年份:2000
- 资助金额:
$ 13万 - 项目类别:
Continuing Grant
Mathematical Sciences: Spectral and Fractal Geometry: Analysis on Fractals, Noncommutative Geometry, and PDEs in the Fractal Domain
数学科学:谱和分形几何:分形域中的分形、非交换几何和偏微分方程分析
- 批准号:
9623002 - 财政年份:1996
- 资助金额:
$ 13万 - 项目类别:
Standard Grant
Mathematical Sciences: Investigations in Spectral & Fractal Geometry: Vibrations of Fractal Drums, Spectral Zeta Functions, Analysis on Fractals, & Variational Ellip
数学科学:光谱研究
- 批准号:
9207098 - 财政年份:1992
- 资助金额:
$ 13万 - 项目类别:
Standard Grant
Mathematical Sciences: Spectral and Fractal Geometry for Variational Elliptic Boundary Value Problems
数学科学:变分椭圆边值问题的谱和分形几何
- 批准号:
9196085 - 财政年份:1991
- 资助金额:
$ 13万 - 项目类别:
Continuing Grant
Mathematical Sciences: Spectral and Fractal Geometry for Variational Elliptic Boundary Value Problems
数学科学:变分椭圆边值问题的谱和分形几何
- 批准号:
8904389 - 财政年份:1989
- 资助金额:
$ 13万 - 项目类别:
Continuing Grant
Mathematical Sciences: Schrodinger Operators and Elliptic Eigenvalue Problems with an Indefinite Weight Function
数学科学:薛定谔算子和具有不定权函数的椭圆特征值问题
- 批准号:
8703138 - 财政年份:1987
- 资助金额:
$ 13万 - 项目类别:
Continuing Grant
相似国自然基金
2019年度国际理论物理中心-ICTP School on Geometry and Gravity (smr 3311)
- 批准号:11981240404
- 批准年份:2019
- 资助金额:1.5 万元
- 项目类别:国际(地区)合作与交流项目
新型IIIB、IVB 族元素手性CGC金属有机化合物(Constrained-Geometry Complexes)的合成及反应性研究
- 批准号:20602003
- 批准年份:2006
- 资助金额:26.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Computational Tropical Geometry and its Applications
计算热带几何及其应用
- 批准号:
MR/Y003888/1 - 财政年份:2024
- 资助金额:
$ 13万 - 项目类别:
Fellowship
A1-Homotopy Theory and Applications to Enumerative Geometry and Number Theory
A1-同伦理论及其在枚举几何和数论中的应用
- 批准号:
2405191 - 财政年份:2024
- 资助金额:
$ 13万 - 项目类别:
Standard Grant
Lagrangian Multiforms for Symmetries and Integrability: Classification, Geometry, and Applications
对称性和可积性的拉格朗日多重形式:分类、几何和应用
- 批准号:
EP/Y006712/1 - 财政年份:2024
- 资助金额:
$ 13万 - 项目类别:
Fellowship
Applications of Algebraic Geometry to Multivariate Gaussian Models
代数几何在多元高斯模型中的应用
- 批准号:
2306672 - 财政年份:2023
- 资助金额:
$ 13万 - 项目类别:
Continuing Grant
Study on supersingular curves and their moduli spaces via computational algebraic geometry and its applications to cryptography
基于计算代数几何的超奇异曲线及其模空间研究及其在密码学中的应用
- 批准号:
23K12949 - 财政年份:2023
- 资助金额:
$ 13万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Applications of homotopy theory to algebraic geometry and physics
同伦理论在代数几何和物理学中的应用
- 批准号:
2305373 - 财政年份:2023
- 资助金额:
$ 13万 - 项目类别:
Standard Grant
Conference: Red Raider Mini-Symposium on Differential Geometry, Integrable Systems, and Applications
会议:Red Raider 微分几何、可积系统及应用小型研讨会
- 批准号:
2301994 - 财政年份:2023
- 资助金额:
$ 13万 - 项目类别:
Standard Grant
Applications of Higher Algebraic Structures in Noncommutative Geometry
高等代数结构在非交换几何中的应用
- 批准号:
2302447 - 财政年份:2023
- 资助金额:
$ 13万 - 项目类别:
Continuing Grant
Conference: Recent advances in applications of harmonic analysis to convex geometry
会议:调和分析在凸几何中的应用的最新进展
- 批准号:
2246779 - 财政年份:2023
- 资助金额:
$ 13万 - 项目类别:
Standard Grant
Higher Multiplier Ideals and Other Applications of Hodge Theory in Algebraic Geometry
更高乘数理想及霍奇理论在代数几何中的其他应用
- 批准号:
2301526 - 财政年份:2023
- 资助金额:
$ 13万 - 项目类别:
Continuing Grant














{{item.name}}会员




