Materials World Network: Physically Based Approach for Predicting and Minimizing Damage Nucleation in Metals
材料世界网络:基于物理的方法预测和最小化金属中的损伤成核
基本信息
- 批准号:0710570
- 负责人:
- 金额:$ 41.9万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2007
- 资助国家:美国
- 起止时间:2007-08-15 至 2011-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The ability to predict damage nucleation and evaluate whether it will lead to a fatal flaw is one of the major goals of computational plasticity. However, most modeling of damage is based upon the assumption of pre-existing flaws or cracks, and the modeling approaches developed so far predict the growth rather than the nucleation of damage. While heterogeneous deformation is understood to be a precursor to damage nucleation, the step between heterogeneous deformation and damage nucleation is not clearly understood. If heterogeneous deformation is not modeled accurately, then it is unlikely that damage nucleation and subsequent damage growth can be confidently predicted. From a review of current understanding of heterogeneous deformation and deformation transfer at grain boundaries, identification of mechanisms of damage nucleation will require quantitative knowledge of (i) the orientations of crystals on either side of the interface, (ii) the boundary orientation and structure (energy), (iii) the activated deformation systems on either side of the boundary, and (iv) the stress-strain gradient history in the grains on either side of an interface. This research examines metals and alloys with simple microstructures that have an intrinsically low ductility (in this case titanium and dual phase steels) and thus provide the best opportunity to gain the slip-system-based information needed to clearly identify damage nucleation mechanisms. The goals of this research program are: (1) Identify fundamental rules for identifying strong and weak boundaries in the context of a deformation path (2) Express rules quantitatively in the form of models that track boundary strength as a function of local stress and strain history. (3) Implement grain boundary strength rules into computational models of mesoscale deformation. This is accomplished in a joint research project involving Michigan State University (MSU) and Max Planck Institut fr Eisenforschung (MPIE) in Dsseldorf, Germany, where mutually useful skills are present which can reach the above goals when integrated into an international cooperative research program. The research is based upon obtaining sufficiently detailed data sets so that damage nucleation mechanisms in polycrystal boundaries can be clearly identified. State of the art methodologies are used, which permit comparisons of multiple experimental methodologies that provide complimentary information. Comparison of data sets helps quantify the resolution and credibility of orientation imaging microscopy, serial sectioning, three-dimensional x-ray mapping, electron channeling contrast imaging (ECCI) and backscattered electron imaging. These rich data sets facilitate model development that is needed before damage nucleation can be predicted with confidence in computational models. The work is carried out by three Ph.D. students under the guidance of Profs Bieler and Crimp at MSU, and Drs. Philip Eisenlohr and Franz Roters at the Max Planck Institut fr Eisenforschung. Extensive exchanges between the two laboratories occur in order to integrate experimental and analytical methods to reach these goals. Multi-scale modeling of sophisticated processing and service conditions of advanced materials and components is needed to support all technological innovations that drive the world economy. It is difficult to think of an aspect of material processing that affects society more than being able to reliably predict damage nucleation. Success in implementing credible models of damage nucleation in design environments will lead to reduced waste, accelerated time to market for highly value-added manufactured goods, improved safety and economy in all aspects of technology and engineering. This award is co-funded with the Office of International Science and Engineering.
预测损伤成核和评估是否会导致致命缺陷的能力是计算塑性的主要目标之一。然而,大多数损伤建模是基于预先存在缺陷或裂纹的假设,并且迄今为止开发的建模方法预测损伤的扩展而不是成核。虽然非均质变形被认为是损伤成核的前兆,但非均质变形和损伤成核之间的步骤还不清楚。如果不准确地模拟非均质变形,那么就不可能自信地预测损伤成核和随后的损伤增长。从目前对晶界非均质变形和变形转移的理解来看,识别损伤成核机制将需要定量了解(i)界面两侧晶体的取向,(ii)边界取向和结构(能量),(iii)边界两侧的激活变形系统,以及(iv)界面两侧晶粒的应力-应变梯度历史。本研究考察了具有本质上低延展性的简单显微组织的金属和合金(在本例中为钛和双相钢),从而为获得基于滑移系统的信息提供了最好的机会,这些信息需要清楚地识别损伤成核机制。本研究计划的目标是:(1)确定在变形路径背景下识别强弱边界的基本规则(2)以模型的形式定量表达规则,跟踪边界强度作为局部应力和应变历史的函数。(3)将晶界强度规则引入中尺度变形计算模型。这是在密歇根州立大学(MSU)和德国杜塞尔多夫马克斯普朗克艾森豪斯研究所(MPIE)的联合研究项目中完成的,其中相互有用的技能存在,当整合到国际合作研究计划时,可以达到上述目标。该研究是建立在获得足够详细的数据集的基础上,以便清楚地识别多晶边界的损伤成核机制。使用最先进的方法,允许对提供补充信息的多种实验方法进行比较。数据集的比较有助于量化定向成像显微镜、连续切片、三维x射线成像、电子通道对比成像(ECCI)和背散射电子成像的分辨率和可信度。这些丰富的数据集促进了模型的开发,这是在计算模型中有信心预测损伤成核之前所需要的。这项工作是由密歇根州立大学的三名博士生在Bieler教授和Crimp教授的指导下进行的。菲利普·艾森洛和弗朗茨·罗特斯在马克斯·普朗克艾森洛研究所。为了整合实验和分析方法以达到这些目标,两个实验室之间进行了广泛的交流。需要对先进材料和部件的复杂加工和服务条件进行多尺度建模,以支持推动世界经济的所有技术创新。很难想象材料加工的一个方面比能够可靠地预测损伤成核对社会的影响更大。在设计环境中成功实施可靠的损伤成核模型将减少浪费,加快高附加值制成品的上市时间,提高技术和工程各方面的安全性和经济性。该奖项与国际科学与工程办公室共同资助。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Thomas Bieler其他文献
Impact of Isothermal Aging on Long-Term Reliability of Fine-Pitch Ball Grid Array Packages with Sn-Ag-Cu Solder Interconnects: Die Size Effects
等温时效对具有锡银铜焊料互连的细间距球栅阵列封装长期可靠性的影响:管芯尺寸效应
- DOI:
10.1007/s11664-011-1702-1 - 发表时间:
2011-06-29 - 期刊:
- 影响因子:2.500
- 作者:
Tae-Kyu Lee;Weidong Xie;Bite Zhou;Thomas Bieler;Kuo-Chuan Liu - 通讯作者:
Kuo-Chuan Liu
Thomas Bieler的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Thomas Bieler', 18)}}的其他基金
Materials World Network: Characterization and Modeling of the Interplay between Grain Boundaries and Heterogeneous Plasticity in Titanium
材料世界网络:钛晶界与异质塑性之间相互作用的表征和建模
- 批准号:
1108211 - 财政年份:2011
- 资助金额:
$ 41.9万 - 项目类别:
Continuing Grant
GOALI: Microstructural Evolution and Damage Nucleation Mechanisms during Thermomechanical Cycling in the Sn Phase of Lead-free Solder Joints
目标:无铅焊点锡相热机械循环过程中的微观结构演变和损伤成核机制
- 批准号:
1006656 - 财政年份:2010
- 资助金额:
$ 41.9万 - 项目类别:
Standard Grant
相似国自然基金
国际心脏研究会第二十三届世界大会(XXIII World Congress ISHR)
- 批准号:81942001
- 批准年份:2019
- 资助金额:10 万元
- 项目类别:专项基金项目
相似海外基金
Materials World Network: Collaborative Proposal: Understanding the Optical Response of Designer Epsilon Near Zero Materials
材料世界网络:协作提案:了解设计师 Epsilon 近零材料的光学响应
- 批准号:
1711849 - 财政年份:2016
- 资助金额:
$ 41.9万 - 项目类别:
Continuing Grant
Materials World Network, SusChEM: Hybrid Sol-Gel Route to Chromate-free Anticorrosive Coatings
材料世界网络,SusChEM:混合溶胶-凝胶路线制备无铬酸盐防腐涂料
- 批准号:
1313544 - 财政年份:2014
- 资助金额:
$ 41.9万 - 项目类别:
Standard Grant
Materials World Network: Investigations of Quantum Fluctuation Relations Using Superconducting Qubits
材料世界网络:利用超导量子位研究量子涨落关系
- 批准号:
1312421 - 财政年份:2013
- 资助金额:
$ 41.9万 - 项目类别:
Standard Grant
Materials World Network, SusChEM: Control of Interfacial Chemistry in Reactive Nanolaminates (CIREN)
材料世界网络,SusChEM:反应性纳米层压材料中界面化学的控制(CIREN)
- 批准号:
1312525 - 财政年份:2013
- 资助金额:
$ 41.9万 - 项目类别:
Standard Grant
Materials World Network: Particle-Mediated Control Over Crystallization: From the Pre-Nucleation Stage to the Final Crystal
材料世界网络:粒子介导的结晶控制:从预成核阶段到最终晶体
- 批准号:
1312697 - 财政年份:2013
- 资助金额:
$ 41.9万 - 项目类别:
Standard Grant
Materials World Network: New Functionality in Complex Magnetic Structures with Perpendicular Anisotropy
材料世界网络:具有垂直各向异性的复杂磁结构的新功能
- 批准号:
1312750 - 财政年份:2013
- 资助金额:
$ 41.9万 - 项目类别:
Standard Grant
Materials World Network, SusChEM: Collaborative Electron-lattice Dynamics at an Atomically Controlled Buried Interface
材料世界网络,SusChEM:原子控制掩埋界面的协同电子晶格动力学
- 批准号:
1311849 - 财政年份:2013
- 资助金额:
$ 41.9万 - 项目类别:
Standard Grant
Materials World Network: Crackling Noise
材料世界网:噼啪声
- 批准号:
1312160 - 财政年份:2013
- 资助金额:
$ 41.9万 - 项目类别:
Standard Grant
Materials World Network: Development of high-efficiency photovoltaic devices for optimal performance under a broad range of spectral illumination conditions
材料世界网络:开发高效光伏器件,在广泛的光谱照明条件下实现最佳性能
- 批准号:
239013293 - 财政年份:2013
- 资助金额:
$ 41.9万 - 项目类别:
Research Grants
Materials World Network: Electron-lattice dynamics at an atomically controlled buried interface
材料世界网络:原子控制掩埋界面的电子晶格动力学
- 批准号:
240640164 - 财政年份:2013
- 资助金额:
$ 41.9万 - 项目类别:
Research Grants