Collaborative Research: NeTS-NBD: SCAN: Statistical Collaborative Analysis of Networks
协作研究:NeTS-NBD:SCAN:网络统计协作分析
基本信息
- 批准号:0721581
- 负责人:
- 金额:$ 27.9万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2008
- 资助国家:美国
- 起止时间:2008-01-01 至 2010-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Communications networks increasingly rely on robust, accurate monitoring systems to help network operators detect disruptions, misconfigurations, and failures. Accurate monitoring techniques detect disruptions when they occur (with a negligible number of false alarms), and identify the source of the disruption, for example, the faulty network element, the source of unwanted traffic. Robust monitoring detects disruptions when measurements may be noisy, incomplete, or when attackers are actively trying to disguise their presence. Network monitoring is most accurate when distributed; that is, when it draws upon observations from a large number of vantage points. Monitoring is more robust when it is network-level; that is, when it can rely on properties of the network traffic, rather than on other features such as traffic content. The researchers are developing techniques for distributed, network-level monitoring and incorporating these techniques into a distributed data management system for detecting network disruptions in two areas: internal network faults and failures, and external threats and unwanted traffic.The research has three themes: (1) Online, distributed, detection algorithms; (2) Informed actuation that uses passive measurements as a baseline, judiciously choosing active measurements to issue in support of the passive measurements, (3) Incorporating these techniques into real-world systems to evaluate the practicality of the schemes and their applicability in realistic network monitoring settings. We will evaluate our algorithms in two settings: detection of internal network disruptions (e.g., failures, faults and misconfigurations within a single network, such as a campus or enterprise network); and fast detection of global threats (e.g. spam, botnets).
通信网络越来越依赖于强大、准确的监控系统来帮助网络运营商检测中断、错误配置和故障。精确的监控技术在中断发生时检测到中断(错误警报的数量可以忽略不计),并确定中断的来源,例如,有故障的网络元素,不需要的流量的来源。当测量可能有噪声、不完整或攻击者积极地试图掩饰他们的存在时,健壮的监视可以检测中断。分布式时网络监控最准确;也就是说,当它从大量有利位置进行观察时。网络级别的监控更健壮;也就是说,它可以依赖于网络流量的属性,而不是依赖于流量内容等其他特征。研究人员正在开发分布式网络级监控技术,并将这些技术整合到分布式数据管理系统中,用于检测两个领域的网络中断:内部网络故障和故障,以及外部威胁和不必要的流量。本研究有三个主题:(1)在线、分布式、检测算法;(2)以被动测量为基准的知情驱动,明智地选择主动测量来支持被动测量,(3)将这些技术纳入现实世界的系统,以评估方案的实用性及其在现实网络监测设置中的适用性。我们将在两种情况下评估我们的算法:检测内部网络中断(例如,单个网络内的故障,故障和错误配置,例如校园或企业网络);快速检测全球威胁(如垃圾邮件、僵尸网络)。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Nicholas Feamster其他文献
Nicholas Feamster的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Nicholas Feamster', 18)}}的其他基金
Collaborative Research: IMR: MM-1A: Measuring Internet Access Networks Across Space and Time
合作研究:IMR:MM-1A:跨空间和时间测量互联网接入网络
- 批准号:
2319603 - 财政年份:2023
- 资助金额:
$ 27.9万 - 项目类别:
Continuing Grant
SaTC: CORE: Small: Understanding Practical Deployment Considerations for Decentralized, Encrypted DNS
SaTC:核心:小型:了解去中心化加密 DNS 的实际部署注意事项
- 批准号:
2155128 - 财政年份:2022
- 资助金额:
$ 27.9万 - 项目类别:
Standard Grant
IMR: MT: A Community Platform for Controlled Experiments on Internet Access Networks
IMR:MT:互联网接入网络受控实验的社区平台
- 批准号:
2223610 - 财政年份:2022
- 资助金额:
$ 27.9万 - 项目类别:
Standard Grant
Collaborative Research: CISE-ANR: CNS Core: Small: Modeling Modern Network Traffic: From Data Representation to Automated Machine Learning
合作研究:CISE-ANR:CNS 核心:小型:现代网络流量建模:从数据表示到自动化机器学习
- 批准号:
2124393 - 财政年份:2021
- 资助金额:
$ 27.9万 - 项目类别:
Standard Grant
EAGER: SaTC-EDU: Training Mid-Career Security Professionals in Machine Learning and Data-Driven Cybersecurity
EAGER:SaTC-EDU:在机器学习和数据驱动的网络安全方面培训职业中期安全专业人员
- 批准号:
2041970 - 财政年份:2020
- 资助金额:
$ 27.9万 - 项目类别:
Standard Grant
RAPID: Measuring the Effects of the COVID-19 Pandemic on Broadband Access Networks to Inform Robust Network Design
RAPID:测量 COVID-19 大流行对宽带接入网络的影响,为稳健的网络设计提供信息
- 批准号:
2028145 - 财政年份:2020
- 资助金额:
$ 27.9万 - 项目类别:
Standard Grant
CPS: Medium: Detecting and Controlling Unwanted Data Flows in the Internet of Things
CPS:中:检测和控制物联网中不需要的数据流
- 批准号:
1953740 - 财政年份:2019
- 资助金额:
$ 27.9万 - 项目类别:
Cooperative Agreement
TWC: TTP Option: Large: Collaborative: Towards a Science of Censorship Resistance
TWC:TTP 选项:大:协作:走向审查制度抵抗的科学
- 批准号:
1953513 - 财政年份:2019
- 资助金额:
$ 27.9万 - 项目类别:
Continuing Grant
CPS: Medium: Detecting and Controlling Unwanted Data Flows in the Internet of Things
CPS:中:检测和控制物联网中不需要的数据流
- 批准号:
1739809 - 财政年份:2018
- 资助金额:
$ 27.9万 - 项目类别:
Cooperative Agreement
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: NeTS: Small: A Privacy-Aware Human-Centered QoE Assessment Framework for Immersive Videos
协作研究:NetS:小型:一种具有隐私意识、以人为本的沉浸式视频 QoE 评估框架
- 批准号:
2343619 - 财政年份:2024
- 资助金额:
$ 27.9万 - 项目类别:
Standard Grant
Collaborative Research: NeTS: Small: A Privacy-Aware Human-Centered QoE Assessment Framework for Immersive Videos
协作研究:NetS:小型:一种具有隐私意识、以人为本的沉浸式视频 QoE 评估框架
- 批准号:
2343618 - 财政年份:2024
- 资助金额:
$ 27.9万 - 项目类别:
Standard Grant
Collaborative Research: NeTS: Medium: EdgeRIC: Empowering Real-time Intelligent Control and Optimization for NextG Cellular Radio Access Networks
合作研究:NeTS:媒介:EdgeRIC:为下一代蜂窝无线接入网络提供实时智能控制和优化
- 批准号:
2312978 - 财政年份:2023
- 资助金额:
$ 27.9万 - 项目类别:
Standard Grant
Collaborative Research: NeTS: Small: Digital Network Twins: Mapping Next Generation Wireless into Digital Reality
合作研究:NeTS:小型:数字网络双胞胎:将下一代无线映射到数字现实
- 批准号:
2312138 - 财政年份:2023
- 资助金额:
$ 27.9万 - 项目类别:
Standard Grant
Collaborative Research: NeTS: Small: Digital Network Twins: Mapping Next Generation Wireless into Digital Reality
合作研究:NeTS:小型:数字网络双胞胎:将下一代无线映射到数字现实
- 批准号:
2312139 - 财政年份:2023
- 资助金额:
$ 27.9万 - 项目类别:
Standard Grant
Collaborative Research: NeTS: Medium: Towards High-Performing LoRa with Embedded Intelligence on the Edge
协作研究:NeTS:中:利用边缘嵌入式智能实现高性能 LoRa
- 批准号:
2312676 - 财政年份:2023
- 资助金额:
$ 27.9万 - 项目类别:
Standard Grant
Collaborative Research: NeTS: Medium: Black-box Optimization of White-box Networks: Online Learning for Autonomous Resource Management in NextG Wireless Networks
合作研究:NeTS:中:白盒网络的黑盒优化:下一代无线网络中自主资源管理的在线学习
- 批准号:
2312835 - 财政年份:2023
- 资助金额:
$ 27.9万 - 项目类别:
Standard Grant
Collaborative Research: NeTS: Medium: An Integrated Multi-Time Scale Approach to High-Performance, Intelligent, and Secure O-RAN based NextG
合作研究:NeTS:Medium:基于 NextG 的高性能、智能和安全 O-RAN 的集成多时间尺度方法
- 批准号:
2312447 - 财政年份:2023
- 资助金额:
$ 27.9万 - 项目类别:
Standard Grant
Collaborative Research: NeTS: Medium: Large Scale Analysis of Configurations and Management Practices in the Domain Name System
合作研究:NetS:中型:域名系统配置和管理实践的大规模分析
- 批准号:
2312711 - 财政年份:2023
- 资助金额:
$ 27.9万 - 项目类别:
Standard Grant
Collaborative Research: NeTS: Medium: Black-box Optimization of White-box Networks: Online Learning for Autonomous Resource Management in NextG Wireless Networks
合作研究:NeTS:中:白盒网络的黑盒优化:下一代无线网络中自主资源管理的在线学习
- 批准号:
2312836 - 财政年份:2023
- 资助金额:
$ 27.9万 - 项目类别:
Standard Grant














{{item.name}}会员




