Collaborative Research: Understanding the Synergistic Effect of Graphene Plasmonics and Nanoscale Spatial Confinement on Solar-Driven Water Phase Change
合作研究:了解石墨烯等离子体和纳米尺度空间约束对太阳能驱动水相变的协同效应
基本信息
- 批准号:1937923
- 负责人:
- 金额:$ 21万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-01-01 至 2023-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Water desalination and wastewater treatment rely on the consumption of significant amounts of energy. For distributed water treatment systems, the cost can be ten times higher than that of the centralized plants. The ability to use renewable energy such as solar energy to replace completely, or in part, the energy needed for water treatment may lead to substantial impacts on the sustainability of the global energy and water supply. Efficient solar-thermal energy conversion for vapor generation is an important green technology that could reduce the energy demands of water desalination and wastewater treatment. However, the low vapor evaporation rate remains a challenge for many practical applications. Graphene plasmonics, which refers to the collective electron oscillation in graphene flakes when excited by light, is believed to contribute to the enhanced solar-to-thermal conversion efficiency of graphene nanopetal structures. In this research project, computer modeling and experiments will be combined to understand the synergistic effects of graphene plasmonics and spatial confinement on thermodynamic properties of water and the solar-driven water evaporation rate. The knowledge gained from this study will assist in developing new graphene plasmonic materials for solar thermal evaporation applications. The project will also include significant educational activities, such as outreach programs for local K-12 students and teachers and undergraduate research programs with open-ended design projects.The goal of this research project is to understand how the plasmon resonance-induced local electric field due to extreme light confinement along the unique nanopetal edges either aligns or dis-aligns water molecular dipoles confined between the vertically freestanding graphene flakes in a porous structure. The research project integrates full electromagnetic wave calculations, molecular simulations, and experimental validation. Some of the specific objectives include understanding the fundamental mechanisms governing the influence of graphene plasmonics-induced thermodynamic property change of nano-confined water on vapor evaporation rate. A combination of electromagnetic wave calculations and molecular simulations will be used to model this system. Additionally, the researchers will validate the modeling results through experiments on solar-driven water phase change mediated by anomalous near-infrared plasmons in uniquely synthesized porous graphene nanopetal structures. This project is expected to reveal new mechanisms of graphene plasmon resonance-mediated water phase transition, which may contribute to improving solar-thermal energy conversion technologies.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
海水淡化和废水处理依赖于大量能源的消耗。 对于分布式水处理系统,成本可能比集中式工厂高出十倍。使用可再生能源(如太阳能)完全或部分替代水处理所需能源的能力可能会对全球能源和水供应的可持续性产生重大影响。 高效的太阳能-热能转换产生蒸汽是一项重要的绿色技术,可以减少海水淡化和废水处理的能源需求。 然而,低蒸汽蒸发速率对于许多实际应用仍然是一个挑战。石墨烯等离子体激元,其是指当被光激发时石墨烯薄片中的集体电子振荡,被认为有助于石墨烯纳米金属结构的增强的太阳能到热转换效率。在这个研究项目中,计算机建模和实验将结合起来,以了解石墨烯等离子体和空间限制对水的热力学性质和太阳能驱动的水蒸发速率的协同效应。从这项研究中获得的知识将有助于开发新的石墨烯等离子体材料用于太阳能热蒸发应用。该项目还将包括重要的教育活动,例如为当地K-12学生和教师的推广计划以及具有开放式设计项目的本科生研究计划。该研究项目的目标是了解由于极端光限制沿着独特的纳米金属边缘的等离子体共振诱导的局部电场是如何对齐或错位的。使限制在多孔结构中的垂直独立的石墨烯薄片之间的水分子偶极子对准。 该研究项目集成了完整的电磁波计算,分子模拟和实验验证。 一些具体的目标包括理解石墨烯等离子体引起的纳米约束水的热力学性质变化对蒸汽蒸发速率的影响的基本机制。 电磁波计算和分子模拟的组合将被用来模拟这个系统。 此外,研究人员将通过在独特合成的多孔石墨烯纳米结构中由异常近红外等离子体介导的太阳能驱动的水相变实验来验证建模结果。该项目有望揭示石墨烯等离子体共振介导的水相变的新机制,这可能有助于改善太阳能-热能转换技术。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(16)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Anisotropically tuning interfacial thermal conductance between graphite and poly(ethylene oxide) by lithium-ion intercalation: A molecular dynamics study
- DOI:10.1016/j.ijheatmasstransfer.2022.123134
- 发表时间:2022
- 期刊:
- 影响因子:5.2
- 作者:Siyu Tian;Zhihao Xu;Shiwen Wu;T. Luo;Guoping Xiong
- 通讯作者:Siyu Tian;Zhihao Xu;Shiwen Wu;T. Luo;Guoping Xiong
Enhanced thermal transport across the interface between charged graphene and poly(ethylene oxide) by non-covalent functionalization
- DOI:10.1016/j.ijheatmasstransfer.2021.122188
- 发表时间:2021-11
- 期刊:
- 影响因子:5.2
- 作者:Siyu Tian;Dezhao Huang;Zhihao Xu;Shiwen Wu;T. Luo;Guoping Xiong
- 通讯作者:Siyu Tian;Dezhao Huang;Zhihao Xu;Shiwen Wu;T. Luo;Guoping Xiong
Effect of electric field on water free energy in graphene nanochannel
- DOI:10.1063/5.0080876
- 发表时间:2022-07
- 期刊:
- 影响因子:3.2
- 作者:Dezhao Huang;Shiwen Wu;Guoping Xiong;T. Luo
- 通讯作者:Dezhao Huang;Shiwen Wu;Guoping Xiong;T. Luo
Simultaneous solar-driven seawater desalination and continuous oil recovery
同步太阳能驱动海水淡化和连续采油
- DOI:10.1016/j.nanoen.2022.108160
- 发表时间:2023
- 期刊:
- 影响因子:17.6
- 作者:Wu, Shiwen;Jian, Ruda;Tian, Siyu;Zhou, Long;Luo, Tengfei;Xiong, Guoping
- 通讯作者:Xiong, Guoping
Biocompatible Direct Deposition of Functionalized Nanoparticles Using Shrinking Surface Plasmonic Bubble
- DOI:10.1002/admi.202000597
- 发表时间:2020-06-01
- 期刊:
- 影响因子:5.4
- 作者:Moon, Seunghyun;Zhang, Qiushi;Luo, Tengfei
- 通讯作者:Luo, Tengfei
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Tengfei Luo其他文献
Quantum annealing for combinatorial optimization: a benchmarking study
用于组合优化的量子退火:一项基准测试研究
- DOI:
10.1038/s41534-025-01020-1 - 发表时间:
2025-05-16 - 期刊:
- 影响因子:8.300
- 作者:
Seongmin Kim;Sang-Woo Ahn;In-Saeng Suh;Alexander W. Dowling;Eungkyu Lee;Tengfei Luo - 通讯作者:
Tengfei Luo
Thermal transport in thermoelectrics from first-principles calculations
根据第一性原理计算热电学中的热传输
- DOI:
- 发表时间:
2012 - 期刊:
- 影响因子:0
- 作者:
Keivan Esfarjani;Junichiro Shiorai;Takuma Shiga;Zhiting Tian;Tengfei Luo;Gang Chen - 通讯作者:
Gang Chen
Environmental protein corona on nanoplastics altered the responses of skin keratinocytes and fibroblast cells to the particles
纳米塑料上的环境蛋白冠改变了皮肤角质形成细胞和成纤维细胞对颗粒的反应
- DOI:
10.1016/j.jhazmat.2025.138722 - 发表时间:
2025-08-15 - 期刊:
- 影响因子:11.300
- 作者:
Kayla Simpson;Leisha Martin;Shamus L. O’Leary;John Watt;Seunghyun Moon;Tengfei Luo;Wei Xu - 通讯作者:
Wei Xu
Inverse binary optimization of convolutional neural network in active learning efficiently designs nanophotonic structures
基于主动学习的卷积神经网络逆二值化优化有效设计纳米光子结构
- DOI:
10.1038/s41598-025-99570-z - 发表时间:
2025-04-30 - 期刊:
- 影响因子:3.900
- 作者:
Jaehyeon Park;Zhihao Xu;Gyeong-Moon Park;Tengfei Luo;Eungkyu Lee - 通讯作者:
Eungkyu Lee
Quantum-Inspired Genetic Algorithm for Designing Planar Multilayer Photonic Structure
用于设计平面多层光子结构的量子启发遗传算法
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Zhihao Xu;Wenjie Shang;Seongmin Kim;Alexandria Bobbitt;Eungkyu Lee;Tengfei Luo - 通讯作者:
Tengfei Luo
Tengfei Luo的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Tengfei Luo', 18)}}的其他基金
Collaborative Research: Material Simulation-driven Electrolyte Designs in Intermediate-temperature Na-K / S Batteries for Long-duration Energy Storage
合作研究:用于长期储能的中温Na-K / S电池中材料模拟驱动的电解质设计
- 批准号:
2341995 - 财政年份:2024
- 资助金额:
$ 21万 - 项目类别:
Standard Grant
Developing and Understanding Thermally Conductive Polymers by Combining Molecular Simulation, Machine Learning and Experiment
通过结合分子模拟、机器学习和实验来开发和理解导热聚合物
- 批准号:
2332270 - 财政年份:2024
- 资助金额:
$ 21万 - 项目类别:
Standard Grant
ISS: Plasmonic Bubble Enabled Nanoparticle Deposition under Micro-Gravity
ISS:微重力下等离子气泡实现纳米颗粒沉积
- 批准号:
2224307 - 财政年份:2022
- 资助金额:
$ 21万 - 项目类别:
Standard Grant
US-Japan Joint Workshop on Thermal Transport, Materials Informatics and Quantum Computing
美日热传输、材料信息学和量子计算联合研讨会
- 批准号:
2124850 - 财政年份:2021
- 资助金额:
$ 21万 - 项目类别:
Standard Grant
Discover and Understand Microporous Polymers for Size-sieving Separation Membranes using Active Learning
使用主动学习发现和了解用于尺寸筛分分离膜的微孔聚合物
- 批准号:
2102592 - 财政年份:2021
- 资助金额:
$ 21万 - 项目类别:
Standard Grant
EAGER: Collaborative Research: Dynamics of Nanoparticles in Light-Excited Supercavitation
EAGER:合作研究:光激发超空化中纳米粒子的动力学
- 批准号:
2040565 - 财政年份:2020
- 资助金额:
$ 21万 - 项目类别:
Standard Grant
Collaborative Research: Using molecular functionalization to tune nanoscale interfacial energy and momentum transport
合作研究:利用分子功能化来调节纳米级界面能量和动量传输
- 批准号:
2001079 - 财政年份:2020
- 资助金额:
$ 21万 - 项目类别:
Continuing Grant
Collaborative Research: Chemically Modified, Plasma-Nanoengineered Graphene Nanopetals for Spontaneous, Self-Powered and Efficient Oil Contamination Remediation
合作研究:化学改性、等离子体纳米工程石墨烯纳米花瓣用于自发、自供电和高效的石油污染修复
- 批准号:
1949910 - 财政年份:2020
- 资助金额:
$ 21万 - 项目类别:
Standard Grant
Highly Sensitive Multiplexed Nanocone Array for Point-of-Care Pan-Cancer Screening
用于护理点泛癌症筛查的高灵敏度多重纳米锥阵列
- 批准号:
1931850 - 财政年份:2019
- 资助金额:
$ 21万 - 项目类别:
Standard Grant
Thermal Evaporation around Optically-Excited Functionalized Nanoparticles
光激发功能化纳米颗粒周围的热蒸发
- 批准号:
1706039 - 财政年份:2017
- 资助金额:
$ 21万 - 项目类别:
Standard Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: Understanding the discharge mechanism at solid/aprotic interfaces of Na-O2 battery cathodes to enhance cell cyclability
合作研究:了解Na-O2电池阴极固体/非质子界面的放电机制,以增强电池的循环性能
- 批准号:
2342025 - 财政年份:2024
- 资助金额:
$ 21万 - 项目类别:
Standard Grant
Collaborative Research: Chain Transform Fault: Understanding the dynamic behavior of a slow-slipping oceanic transform system
合作研究:链变换断层:了解慢滑海洋变换系统的动态行为
- 批准号:
2318855 - 财政年份:2024
- 资助金额:
$ 21万 - 项目类别:
Continuing Grant
Collaborative Research: Understanding Environmental and Ecological Controls on Carbon Export and Flux Attenuation near Bermuda
合作研究:了解百慕大附近碳输出和通量衰减的环境和生态控制
- 批准号:
2318940 - 财政年份:2024
- 资助金额:
$ 21万 - 项目类别:
Standard Grant
Collaborative Research: Understanding and Manipulating Magnetism and Spin Dynamics in Intercalated van der Waals Magnets
合作研究:理解和操纵插层范德华磁体中的磁性和自旋动力学
- 批准号:
2327826 - 财政年份:2024
- 资助金额:
$ 21万 - 项目类别:
Continuing Grant
Collaborative Research: Understanding the Influence of Turbulent Processes on the Spatiotemporal Variability of Downslope Winds in Coastal Environments
合作研究:了解湍流过程对沿海环境下坡风时空变化的影响
- 批准号:
2331729 - 财政年份:2024
- 资助金额:
$ 21万 - 项目类别:
Continuing Grant
Collaborative Research: Mechanistic understanding of chemomechanics in phase-changing electroceramics for sodium-ion batteries
合作研究:钠离子电池相变电陶瓷化学力学的机理理解
- 批准号:
2325464 - 财政年份:2024
- 资助金额:
$ 21万 - 项目类别:
Continuing Grant
Collaborative Research: Design: Strengthening Inclusion by Change in Building Equity, Diversity and Understanding (SICBEDU) in Integrative Biology
合作研究:设计:通过改变综合生物学中的公平、多样性和理解(SICBEDU)来加强包容性
- 批准号:
2335235 - 财政年份:2024
- 资助金额:
$ 21万 - 项目类别:
Standard Grant
Collaborative Research: Understanding and Manipulating Magnetism and Spin Dynamics in Intercalated van der Waals Magnets
合作研究:理解和操纵插层范德华磁体中的磁性和自旋动力学
- 批准号:
2327827 - 财政年份:2024
- 资助金额:
$ 21万 - 项目类别:
Continuing Grant
Collaborative Research: Understanding New Labor Relations for the 21st Century
合作研究:理解21世纪的新型劳动关系
- 批准号:
2346230 - 财政年份:2024
- 资助金额:
$ 21万 - 项目类别:
Standard Grant
Collaborative Research: Improved Understanding of Subduction Zone Tsunami Genesis Using Sea Floor Geodesy Offshore Central America
合作研究:利用中美洲近海海底大地测量学提高对俯冲带海啸成因的了解
- 批准号:
2314272 - 财政年份:2024
- 资助金额:
$ 21万 - 项目类别:
Continuing Grant